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Abstract 
 

Several lines of evidence suggest that the total information content of the observable 
universe is bounded by a finite number given by the area of a cosmological surface 
divided by the Planck area. This is referred to as the holographic principle. The current 
bound is roughly 10122 bits, but in the past it was smaller, varying like t2 in the early 
universe. Although the bound is too large today to affect most of everyday physics, it 
does have profound implications for highly complex systems and for cosmology. For 
example, the project to build a useful quantum computer, which is projected to exploit 
states possessing exponential complexity, comes into conflict with the information bound 
at a level of entanglement of about 400 qubits, suggesting a breakdown of unitary 
evolution at this threshold, possibly associated with the emergence of classicality. If the 
information bound is applied to the quantum vacuum, it yields an energy density close to 
the observed density of cosmological dark energy. However, because the bound is time-
dependent, the vacuum energy will vary in time too, and consistency with energy 
conservation then demands that G or c varies with time over cosmological time scales. 
Further sweeping implications follow if one adopts the philosophy that information is 
primary (‘the universe is a computer’), and that the laws of physics do not exist in a 
transcendent Platonic realm of perfect mathematical forms and operations, as is 
conventionally supposed, but are fundamentally tied to the real physical universe, with its 
finite age and resources, and subject to the holographic information bound. I suggest a 
generalization of the information bound based on this point of view, formulated in terms 
of algorithmic information theory, and briefly mention some of consequences for black 
holes and the inflationary universe scenario. 
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Why should I believe in a real number if I can’t calculate it, if I can’t prove what its bits 
are, and if I can’t even refer to it? …The real line from 0 to 1 looks more and more like a 
Swiss cheese. 
 
        Gregory Chaitin (2005) 
 
 
Whereof one cannot speak, thereof one must remain silent. 
 
        Ludwig Wittgenstein (1921) 
 
 
 
1. Black hole entropy and the Bekenstein bound 
 
A new and surprising link between physics and information followed a landmark 
development in theoretical physics in 1970, when Jacob Bekenstein proposed that the 
surface area of a black hole serves as a measure of its entropy (Bekenstein 1973). This 
unexpected relationship was suggested on the basis of quantum mechanics applied to the 
black hole, and it was confirmed a few years later by Stephen Hawking in a detailed 
calculation (Hawking 1975). For an uncharged, non-rotating black hole, the Bekenstein-
Hawking relationship is 
 

S = 4πkGM 2/ћc3 = ¼A,      (1) 
 
where S, M and A are the entropy, mass and area of the black hole respectively, and the 
other symbols have their usual meanings as various fundamental constants of nature.  
 
The fact that the entropy is a function of black hole area, as opposed to volume, is deeply 
significant. In the case of a laboratory gas, for example, its entropy will be simply 
additive: twice the volume of a (homogeneous) gas will have twice the entropy. 
Evidently, when gravitation enters the picture, the rules of the game change 
fundamentally. Entropy has long been regarded as a measure of information I (or 
information loss), through the relationship 
 
  S = klog2I        (2) 
 
so the Bekenstein-Hawking formula relates the total information content of a region of 
space to the area of the surface encompassing that volume. The information inside a 
black hole is lost because an observer in the external region cannot access it on account 
of the fact that the surface of the hole is bounded by an event horizon. (There remains an 
unresolved issue about whether the information is permanently lost, or just rendered 
inaccessible until the black hole eventually evaporates. I shall not consider that issue 
further in this paper.) A useful way to think about Eq. (1) is to define the Planck length LP 
≡ (G/ћc3)½ as a fundamental unit, and note that, using Eq. (2), the information of the 
black hole is simply one quarter of the horizon area in Planck units. 
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Early on, Bekenstein sought to generalize his result by postulating that Eq. (1) serves as a 
universal bound on entropy (or information content) applicable to any physical system 
(Bekenstein, 1977). That is, the information content of a physical system can never, it is 
claimed, exceed one quarter of the area of its encompassing surface. The black hole 
saturates the Bekenstein bound, and represents the maximum amount of information that 
can be packed into the volume occupied by the hole, as befits the equilibrium end state of 
a gravitating system. A simple argument in support of the universal Bekenstein bound is 
that if a system confined to a certain region of space possessed an information content in 
excess of the bound, one could then add some matter and induce this system to undergo 
gravitational collapse to a black hole, thereby reducing its entropy and violating the 
second law of thermodynamics (suitably generalized to include event horizon area). 
 
The idea of associating entropy and information with horizon area was soon extended to 
include all event horizons, not just those surrounding black holes. For example, if the 
universe becomes dominated by dark energy, which is what current astronomical 
observations suggest, it will continue to expand at an accelerating rate (dark energy acts 
as a sort of antigravity force). This creates a cosmological event horizon, which may be 
envisaged as a roughly spherical surface that bounds the region of the universe to which 
we have causal and informational access. A similar horizon characterizes the period of 
inflation, widely believed to have occurred at about 10–34 s after the big bang. 
Generalizations of horizon entropy have been proposed for cosmological horizon area 
too, with de Sitter space (a universe subject to dark energy alone) saturating the 
Bekenstein bound (Gibbons and Hawking 1977, Bousso 1999, Davies and Davis 2003). 
A number of calculations support this proposal. 
 
Based on the foregoing ideas, ’t Hooft (1993) and Susskind (1995) have proposed the so-
called holographic principle, according to which the information content of the entire 
universe is captured by an enveloping surface that surrounds it. The principle states that 
the total information content of a region of space cannot exceed one quarter of the surface 
area that confines it, and that this limit is attained in the case of the cosmological event 
horizon. A simple calculation of the size of our universe’s event horizon today based on 
the size of the event horizon created by the measured value of dark energy gives an 
information bound of 10122 bits: 
 
 Iuniverse ≤ 10122.         (3) 
 
According to the holographic principle, this huge number represents an upper bound on 
the information content of the universe.  
 
A similar number has been derived by Lloyd (2002), using a slightly different argument. 
Lloyd asks: what is the total number of bits the universe can have processed since its 
origin in a big bang? This number will be finite because of the finite age of the universe, 
the finite rate of information processing due to basic quantum mechanical and 
thermodynamics limitations, and the finite speed of light. The latter creates a particle 
horizon (in effect, a surface that defines the volume of space to which we have causal 
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access at this time). The fact that Lloyd derives a similar limit, 10122 bits, as implied by 
the holographic principle, stems from the well-known coincidence that the density of 
dark energy is roughly the same at the current cosmological epoch as the density of other 
forms of energy.  
 
If the information bound on the universe is taken seriously, it has sweeping implications 
for the nature of the universe and for the nature of physical law. Taken at face value, the 
holographic principle implies that the universe is in a sense two-dimensional. Evidently 
the physical processes taking place within the volume of the universe can be captured by 
a set of rules applied to a cosmological surface. The information bound on this surface 
implies that the number of effective degrees of freedom in the universe is finite, albeit 
enormous, and that the Hilbert space describing its quantum dynamics is finite-
dimensional (see, for example, Thomas 2002). Let me illustrate how this restriction 
affects physics and cosmology with some examples. 
 
2. A cosmological information bound could solve the dark energy problem 
 
A straightforward explanation for dark energy is that it is simply the energy of the 
quantum vacuum (see, for example, Birrell and Davies 1982). For a massless scalar field 
confined to a cube of space of linear dimension L, the energy density ρ of the vacuum is 
given by standard quantum field theory: 

 ρ = ½ћcL–1∑ ω,        (4) 
 

          k 
 
where the sum is taken over all the field modes of momentum k. The right hand side of 
Eq. (2) diverges like ~ ω4 as ω→ ∞. It may be rendered finite by imposing a cut-off in the 
summation. A natural cut-off is provided by the Planck frequency, which incorporates 
only the fundamental constants already present in the theory: ћ, c and G. Using this cut-
off, Eq. (4) yields a vacuum energy density of 10114 Jm–3, which is some 10122 times the 
observed dark energy density. This staggering discrepancy between theory and 
observation has been known for many years, and is known as the dark energy (or 
cosmological constant) problem, and is one of the main outstanding challenges to 
physical theory. 
 
The occurrence of the same factor 10122 in this discrepancy as in the cosmological 
information bound is a clear pointer to an alternative explanation for dark energy, and 
indeed, inequality (3) provides a second natural cut-off for the summation in Eq. (4). 
Rewriting (4) in terms of modes, 
 
 ρ ≈ ћcL–4∑n4.         (5) 
 
I now argue that the sum ∑n4 should be bounded by inequality (3). Taking L to be the 
horizon radius (roughly a Hubble radius) and ∑n4 ~ 10122, we may then evaluate the 
vacuum energy density to be 
 
 ρ ≈ 109 Jm–3  ≈ ρobserved.       (6) 
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The same result may be derived in a completely different way, by imposing the condition 
on the vacuum energy that at every scale of size L, the energy density must not exceed 
the level at which the total mass within a volume L3 exceeds the mass of a black hole of 
size L, otherwise the vacuum energy would presumably undergo gravitational collapse. 
This requirement may be expressed as follows: 
 

ρc2L3 < Mbh(L).        (7) 
 

Substituting the right hand side of Eq. (4) for ρ we obtain, to an order or magnitude, 
 

Gћω4L3/c7 < L         (8) 
 
or 
 

 ρ < c4/GL2.         (9) 
 
Taking L to be the Hubble radius, inequality (9) may be re-cast in the following 
suggestive form: 
 
 ρ < (ρPρH)½  ≈ 109 Jm–3  ≈ ρobserved        (10) 
 
where ρP is the Planck energy density and ρH is the Hubble energy density, defined to be 
the energy density of a single quantum in a Hubble volume with a wavelength equal to 
the Hubble radius. This result has been noted before (see, for example, Padmanabham 
2004). 
 
This remarkable result – that the cosmological information bound explains the magnitude 
of the dark energy – comes at a price, however. The same reasoning may be applied to 
the pressure of the vacuum, p, which for a massless scalar field is  
 
 p = – ½ћcL–1∑ ω,        (11) 
 
i.e. p = – ρ, which is the necessary equation of state for the vacuum energy to play the 
role of dark energy. The information bound (3) is not a fixed number. Rather, it varies 
with time. The time-dependence of Iuniverse will depend on the precise formulation of the 
information bound. For example, Lloyd’s calculation using the particle horizon bound 
yields (Lloyd 2002) 
 
 Iuniverse ~ t2.         (12) 
 
The holographic bound is based on an event horizon, the radius of which is defined as 
follows: 
     ∞ 
 Rh = a(t) ∫dt´/a(t´)        (13) 
     t 
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where a(t) is the cosmological scale factor. If the density of dark energy remains 
constant, Rh will asymptote to a constant value at late times. But at early times, Rh ~ t2 for 
a Friedmann-Robertson-Walker model universe. Thus in both cases, Eq. (12) expresses 
the time dependence of the information bound in the early universe. Hence the cut-off in 
the summation in both Eqs. (4) and (11) will be time-dependent, so the dark energy will 
also be time-dependent. This raises an immediate difficulty with the law of energy 
conservation: 
 
 pda3 + d(ρa3) = 0        (14) 
 
which can be satisfied for a time-dependent p and ρ only if there is some compensatory 
change, e.g. G and/or c vary with time. There is a substantial literature on such 
holographic cosmological models, including comparison with observations, which I shall 
not review here (see, for example, Guberina, Horvat and Nicolić 2006; Hsu 2004; Li 
2004, Thomas 2002).  
 
3. A generic quantum computer may violate the cosmological information bound 
 
A further transformation in our understanding of information came with the recognition 
that because nature is fundamentally quantum mechanical, the rules for information 
processing at the quantum level differ not only in the technical details but in their very 
conceptual basis. In conventional (classical) information theory, the basic unit is the bit, 
or binary choice, usually symbolized by 0 and 1. In quantum mechanics, the bit is 
replaced by a more abstract entity: the qubit. When humans read out the information 
content of a quantum system, they appropriate only bits – the act of read-out collapses 
qubits into bits. But the importance of quantum information dynamics is that in an 
isolated unobserved quantum system, the qubits generally evolve in a manner completely 
different from the classical case, involving the whole panoply of quantum weirdness, 
including, most crucially, superposition and entanglement. It is this feature that has 
commended quantum information science to governments and business by holding out 
the promise of large-scale quantum computation. By exploiting qubit dynamics, a 
quantum computer would represent an unprecedented leap in computational power. A 
review of the field may be found in Nielsen and Chuang (2000). 
 
The key to quantum computation lies with the exponential character of quantum states. 
Whereas a classical binary switch is either on (1) or off (0), a quantum system can be in a 
superposition of the two. Furthermore, a multi-component quantum system can 
incorporate entanglement of spatially separated subsystems. Combining these two 
properties implies that an n-component system (e.g. n atoms) can have 2n states, or 
components of the wave function, that describe the system. If it were possible to control 
all the components, or branches, of the wave function simultaneously, then the quantum 
system would be able to process information exponentially more powerfully than a 
classical computer. This is the essence of the quantum computation industry. So far, 
about a dozen entangled qubits have been constructed, but the goal is to link many 
thousands, or even millions, and permit them to evolve quantum mechanically, as 
isolated as possible from the decohering effect of the environment, and using error 
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correction protocols where disturbances afflict the system. In the final step, the result of 
the quantum computation is read out. 
 
Because the complexity of an entangled state rises exponentially with the number of 
qubits (which is its virtue), large-scale quantum information processing comes into 
conflict with the cosmological information bound implied by the holographic principle. 
Specifically, a quantum state with more components than about n = log2 Iuniverse will 
require more bits of information to define it than can be accommodated in the entire 
observable universe! Using the bound given by inequality (3), this yields a limit of 
approximately n = 400. In other words, an entangled state of more than about 400 
particles will have a quantum state with more components than Iuniverse evolving in a 
Hilbert space with more dimensions than Iuniverse. The question therefore arises of whether 
this violation of the information bound (3) signals a fundamental physical limit. It seems 
to me that it must.  
 
On the face of it, the limit of 400 particles is stringent enough to challenge the quantum 
computation industry, in which a long-term objective is to entangle many thousands or 
even millions of particles and control the evolution of the quantum state to high 
precision. The foregoing analysis, however, contains a possible loophole. First, note that 
the dimensionality of the (non-redundant part of the) Hilbert space is not an invariant 
number: by changing the basis, the number might be reduced. So specifying the 
complexity of a quantum state using the dimensionality of the Hilbert space can be 
misleading. A more relevant criterion is the number of independent parameters needed to 
specify inequivalent n-component quantum systems. This problem has been addressed, 
but it is a difficult one on which only limited progress has so far been made (see, for 
example, Linden and Popescu 1998).  
 
A more subtle issue concerns the specific objectives of the quantum computation 
industry, which is not to control the dynamical evolution of arbitrary entangled quantum 
states, but an infinitesimal subset associated with mathematical problems of interest, such 
as factoring. It is trivially true that it is impossible to prepare, even approximately, a state 
containing more than 10122 truly independent parameters because it is impossible to even 
specify such a state: there are not enough bits in the universe to contain the specification. 
Almost all states fall into this category of being impossible to specify, prepare and 
control. So in this elementary sense, generic quantum computation is obviously 
impossible. Less obvious, however, is whether the subset of states (of measure zero) of 
interest to the quantum computing industry is affected by the cosmological information 
bound, for even if it is the case that the number of independent amplitudes exceeds 10122, 
there may exist a compact mathematical algorithm to generate those amplitudes. (The 
algorithm for generating the amplitudes that specify the initial state should not be 
confused with the algorithm to be executed by the quantum computer dynamics.) For 
example, the amplitudes of the quantum computer’s initial state could be the (unending) 
digits of π, which can be generated by a short algorithm. That is, the set of amplitudes 
may contain an unbounded number of bits of information, but a finite (and even small) 
number of bits might be sufficient to define the generating algorithm of the amplitude set. 
So if the information bound on the universe is interpreted as an upper limit on the 
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algorithmic information (as opposed to the Shannon information), then a measure-zero 
subset of initial states can be specified without violating the cosmological information 
bound. But this loophole leaves many unanswered questions. For example, a 
mathematical specification is one thing, a physical process to implement that 
specification – and to do so in an acceptable period of time – is another. To take the cited 
example, it is far from clear that there exists any physical process that can create an 
entangled quantum state in which the amplitudes (enumerated in some sequence) are the 
digits of π. And even if this further problem is satisfactorily addressed, one has to 
confront the fact that as the initial state evolves, and the amplitudes change, so the set of 
amplitudes may not remain algorithmically compressible. To be sure, a unitary evolution 
of an initially algorithmically compressible state will, by definition, preserve algorithmic 
compressibility (because the unitary operation is an algorithm). But such a pure system is 
unstable: the inevitability of random errors due to the fact that the quantum system is not 
closed will raise the algorithmic complexity, and seemingly raise it above the bound (3) 
in pretty short order. This uncovers a deeper set of issues, which is whether a quantum 
state that cannot be specified, and is in principle unknowable, and the amplitude set of 
which exceeds the total information capacity of the universe, may nevertheless still be 
said to exist and conform to physical law. I will defer a discussion of this topic until the 
final section. 
 
I have been asked what, exactly, would go wrong if one tried to build and operate a 
quantum computer with, say, 500 entangled qubits. First let me make a general point. In 
science, one always has to distinguish between mathematical possibility contained in a 
theory, and physical possibility. For example, general relativity contains mathematical 
models with closed timelike world lines, but these may be inconsistent with cosmological 
boundary conditions or some other global requirement (Davies 2001). So the fact a 
unitary transformation that implements a desirable quantum computation may exist 
mathematically does not necessarily mean it can be implemented physically, even in 
principle. And in fact, a prima face example would seem to be the expectation that the 
resources needed to prepare an initial quantum state are expected to grow with its 
complexity, and would require more and more of the surrounding universe to be 
commandeered, and more yet for the error correction of its evolution. Inevitably, the 
gravitational effects of the commandeered matter will eventually become important. 
Before the complexity of the state reached the cosmological bound of 10122, the entire 
resources of the observable universe would necessarily be exhausted. Thus, almost all 
quantum initial states, and hence almost all unitary transformations, seem to be ruled out 
by the cosmological constraint (3) (if one believes it). It is important to realize, however, 
that this restriction may not be an impediment to preparing an algorithmically simple 
state, providing a physical mechanism can be found to implement the preparation 
algorithm. These criteria will undoubtedly be satisfied for the (very limited) examples of 
known quantum algorithms, such as Shor’s algorithm for factorization, which is 
algorithmically simple by definition, since its input state can be specified and there is a 
simple association between the input data and the initial quantum state. What is less clear 
is whether this ease of preparation of the initial state is representative of a broad class of 
problems of interest, or confined to a handful of special cases. 
 

 8



A more radical conjecture of what might ‘go wrong’ concerns the subsequent evolution 
of the state, which entails an escalation of the algorithmic complexity through the 
cosmological information bound due to random errors in the manner I mentioned above. 
Under these circumstances, it may be that the unitary evolution of the state actually 
breaks down (over and above the breakdown caused by tracing out the degrees of 
freedom associated with the errors caused by environmental disturbances). This would 
manifest itself in the form of an additional source of errors, ultimately of cosmological 
origin, in a manner such that all error-correcting protocols applied to these errors would 
fail to converge. What I am suggesting here seems to be close to the concept of 
unavoidable intrinsic decoherence proposed by Milburn (1991, 2006). Some clarification 
of these issues may emerge from the further study of the recent discovery that the entropy 
of quantum entanglement of a harmonic lattice also scales like area rather than volume 
(Cramer and Eisert 2006), which would seem to offer support for the application of the 
holographic principle to entangled states. It would be good to know how general the 
entanglement-area relationship might be. 
 
4. The emergence of classicality in sufficiently complex quantum systems 
 
It is tempting to speculate that the departure from unitary evolution predicted by 
imposing the cosmological information bound is somehow associated with the emergence 
of classicality in quantum systems. A drawback of the so-called collapse models of the 
quantum-classical transition is the need to introduce additional ad hoc parameters and to 
adulterate quantum mechanics with small nonlinear terms. For example, in the GRW 
scheme, new fundamental units of frequency and size are proposed: 
 
 f = 10–16 s–1  
 

d = 10–5 cm. 
 
The idea that classicality may emerge at a certain threshold of complexity, as opposed to 
mass or size, seems to have been largely overlooked (with the exception of a general 
conjecture by Leggett (1984)). One virtue of the complexity threshold proposal is that 
complexity is a dimensionless quantity, and a natural measure of complexity is given to 
us from cosmology, namely, the information bound (3). My proposal, therefore, is that 
classicality emerges in a system requiring more than Iuniverse bits of information to specify 
it. It is interesting to note that this restriction on the applicability of unitary quantum 
evolution will not affect the theory of quantum cosmology, in which the universe 
originates as some sort of quantum nucleation event, because that process may be 
described by a simple wave function. 
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5. The status of the laws of physics 
 
The real reason to study quantum computing is not to learn other people’s secrets, but to 
unravel the ultimate Secret of Secrets: is our universe a polynomial or an exponential 
place?  
 

Scott Aaronson (2005) 
 
Most theoretical physicists are by temperament Platonists. They consider that the laws of 
physics are perfect idealized mathematical forms and operations that really exist, but 
occupying an abstract realm transcending the physical universe. Thus the project of 
quantum cosmology, for example, is predicated on the assumption that the laws of 
quantum mechanics and (say) general relativity or string/M theory, exist independently of 
the universe, and may therefore be invoked to explain how the universe came to exist 
from nothing. In other words, the laws affect the universe, but the universe does not 
affect the laws. This fundamental asymmetry, however, seems eccentric when the 
universe is viewed in terms of information processing. 
 
The traditional logical dependence of laws, states of matter and information is  
 
  A. laws of physics → matter → information. 
 
Thus, conventionally, the laws of physics form the absolute and eternal bedrock of 
physical reality, and cannot be changed by anything that happens in the universe. Matter 
conforms to the ‘given’ laws, while information is a derivative, or secondary property 
having to do with certain special states of matter. But several physicists have suggested 
that the logical dependence should really be as follows: 
 
  B. laws of physics → information → matter. 
 
In this scheme, often described informally by the dictum ‘the universe is a computer,’ 
information is placed at a more fundamental level than matter. Nature is treated as a vast 
information-processing system, and particles of matter are certain special states which, 
when interrogated by, say, a particle detector, extract or process the underlying quantum 
state information so as to yield particle-like results. It is an inversion famously 
encapsulated by Wheeler’s pithy phrase ‘It from bit’ (Wheeler 1994). Treating the 
universe as a computer has been advocated by Fredkin (1990), Lloyd (2002, 2006) and 
Wolfram (2002) among others.  
 
An even more radical transformation is to place information at the base of the logical 
sequence, thus 
 
  C. information → laws of physics → matter. 
 
The attraction of scheme C is that, after all, the laws of physics are informational 
statements. In the orthodox scheme A, it remains an unexplained concordance that the 
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laws of physics are mathematical/informational, a mystery flagged by Wigner in his 
famous paper ‘The unreasonable effectiveness of mathematics in the physical sciences’ 
(Wigner 1960). 
 
For most purposes the order of logical dependence does not matter much, but when it 
comes to the information bound on the universe, one is forced to confront the status of 
information: is it ontological or epistemological? If information is simply a description of 
what we know about the physical world, as is implied by Scheme A, there is no reason 
why Mother Nature should care about the limit (3). Or, to switch metaphors, the bedrock 
of physical reality according to Scheme A is sought in the perfect laws of physics, which 
live elsewhere, in the realm of the gods – the Platonic domain they are held by tradition 
to inhabit, where they can compute to arbitrary precision with the unlimited amounts of 
information at their disposal. The Platonic realm is the ‘real reality,’ according to 
orthodoxy, while the world of information is but the shadow on Plato’s cave. But if 
information really does underpin physical reality – if it, so to speak, occupies the 
ontological basement – (as is implied in Scheme C and perhaps B) then the bound on 
Iuniverse represents a fundamental limitation on all reality, not merely on states of the 
world that humans perceive. 
 
To see how this plays out in real physics, consider a simple quantum superposition of two 
eigenstates φ1 and φ2: 
 
 ψ = α1φ1 + α2φ2.        (15) 
 
The amplitudes α1and α2 are complex numbers which, in general, demand an infinite 
amount of information to specify them precisely (envisage them written as an infinite 
binary string). If one believes that this information is ‘merely epistemological,’ and that 
the mathematically idealized laws of physics are the true ontological reality (Scheme A), 
then infinitely information-rich complex numbers α1and α2 exist contentedly in the 
Platonic realm of the gods, where they can be subjected to infinitely precise idealized 
mathematical operations such as unitary evolution. And the fact that we humans cannot, 
even in principle, and even by commandeering the entire observable universe, track those 
operations, is merely an epistemological handicap. So in Scheme A, there is no further 
implication of the information bound (3). In short, A says: The universe does not 
compute in the (resource-limited) universe; it computes in the (infinitely resourced) 
Platonic realm. 
 
But if information is ontological, as for example in the heretical Scheme C, then we are 
obliged to assume that ‘the universe computes in the universe,’ and there isn’t an infinite 
source of free information in a Platonic realm at the disposal of Mother Nature. In that 
case, the bound on Iuniverse applies to all forms of information, including such numbers as 
α1and α2 in Eq. (12), and to the dynamical evolution of the state vector ψ, and is not 
merely a bound on the number of degrees of freedom in the universe, or on the 
dimensionality of Hilbert space. Rolf Landauer was a strong advocate of the view that 
‘the universe computes in the universe,’ because he believed that ‘information is 
physical’. He summed up his philosophy as follows (Landauer 1967): 
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 ‘The calculative process, just like the measurement process, is subject to some 

limitations.  A sensible theory of physics must respect these limitations, and should 
not invoke calculative routines that in fact cannot be carried out.’ 

 
In other words, in a universe limited in resources and time – a universe subject to the 
information bound (3) in fact – concepts like real numbers, infinitely precise wave 
function coefficients, differentiable functions, or the unitary evolution of a wave function 
– are a fiction: a useful fiction to be sure, but a fiction nevertheless. Landauer’s proposal 
that our theories should be constrained by the resources of the universe has been 
developed in recent years by Benioff (2003). 
 
Adopting Landauer’s position, if one were to demand that the total information needed to 
specify a quantum state is bounded by Iuniverse, there would be an intrinsic degree or error, 
or uncertainty, involved in specifying the amplitudes. In practice, of course, one cannot in 
any case prepare a quantum state with infinitely-precise amplitudes: there will always be 
some experimental error. Given the enormous value of Iuniverse the consequences of this 
intrinsic source of error will normally be swamped by the practical limitations involved 
in preparing almost all quantum states. But this conclusion cannot be drawn in the case of 
quantum computation involving a large number of qubits, because of the exponential 
nature of quantum entanglement and superposition.  
 
A rigorous formulation of the effect of the cosmological information bound on the 
quantum dynamics of complex systems needs to take note of the following points. Some 
numbers (e.g. π) may be specified by the output of a compact algorithm that contains 
rather little information. Although the set of such algorithmically compressible numbers 
is of measure zero in the set of real numbers, it is nevertheless rich enough to 
accommodate all that humans need to describe physics in practice. Secondly, as I 
discussed in Section 3, a given quantum state may require a set of n amplitude parameters 
to define it, but there may exist a compact algorithm defined by a number of bits << n 
which generates that set, or a subset. It seems reasonable that such states, which may be 
physically complex but algorithmically simple, should not be constrained by (3). These 
considerations suggest that the information bound (3) should be formulated in terms of 
algorithmic information rather than Shannon information. The algorithmic information 
measure of a binary string X is defined as 
 

H(X) = – ln P(X) + O(1)       (16) 
 
where P(X) is the probability that the proverbial monkey typing randomly on a typewriter 
will generate a program which, when run on a universal Turing machine, will output X. 
Applied to the amplitude set {αi} of a generic quantum state (plus any ancillary 
information needed to specify the state, such as constraints), the cosmological 
information bound (3) may be expressed as follows: 
 

H({αi}) < Aholo/LP
2        (17) 
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where Aholo is the area of the appropriate holographic surface (e.g. a cosmological event 
horizon). Inequality (17) is a stronger constraint than (3), appropriate to the interpretation 
of information as ontological and fundamental, and therefore including not merely a 
head-count of the degrees of freedom, but the algorithmic information content of all the 
specifying parameters of the state too. This ‘extra’ burden on the bound will reduce 
somewhat the dimensionality of the Hilbert space at which ‘something funny’ will 
happen. 
 
Some consequences 
 
The stronger version of the information bound, inequality (17), will apply to all forms of 
information, not merely quantum information. For most physical systems it will not 
represent a severe constraint, but careful attention must be given to systems involving 
exponentiation, for then the bound is easily saturated in one of the system variables. In 
the colourful words of Aaronson (2005), ‘Schrödinger’s cat is out of the bag – and all of 
us are being forced to confront the exponential Beast that lurks inside our current picture 
of the world.’   
 
I have already discussed the example of complex quantum systems. Other examples 
come readily to mind. Classical statistical mechanics involves Poincaré recurrence times 
of duration exponential in the number of participating particles. These recurrences are a 
fiction, according to the point of view being expounded here. Chaos theory involves 
exponential sensitivity to initial conditions: it is an unsolved problem of whether the 
theory is ‘overtaken’ by quantum effects before or after the bound (17) kicks in.  
 
Another example is provided by general relativity and cosmology, where surfaces of 
infinite red shift such as horizons are a familiar feature. Also, the inflationary universe 
scenario is based on a period of exponential growth in the cosmological scale factor. An 
important consistency check on the holographic theory concerns the derivation of black 
hole radiance, the starting point for holographic reasoning, on which Bekenstein’s ideas 
depend. Hawking’s original derivation of the thermal nature of black holes (Hawking 
1975) involved an argument in which outgoing modes of a quantum field are propagated 
back in time to the in region prior to the collapse phase, and a suitable Bogoliubov 
transformation is computed. The effect of the gravitational field of the collapsing body is 
to exponentiate the wavelength of the outgoing modes, and this appears as an exponential 
phase factor in the modes; conversely, modes in the out region are exponentially blue 
shifted. The Bogoliubov transformation involves an integral taken over all field modes up 
to infinite frequency, which then yields the thermal nature of the spectrum of particles 
created by the black hole. But according to the information bound, the integral must be 
cut off when the exponential phase factor saturates the bound (17). The result of this is to 
replace the steady thermal radiance of the black hole with a brief pulse of radiation 
(Jacobson 1993). This is a familiar problem in the theory: Hawking’s Bogoliubov 
transformation includes an integration over trans-Planckian modes, so if a cut-off is 
imposed at, say, the Planck frequency then the thermal radiance goes away. Fortunately, 
the Hawking effect may be derived in several different ways, and although a rigorous 
treatment of this problem has not been carried out, there is good circumstantial evidence 
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that the essentially thermal nature of black hole radiation will not be affected by 
truncating the high-frequency modes (Jacobson 1993). Similar considerations apply to 
the thermodynamic character of cosmological horizons. 
 
Finally, let me turn to inflation. It is a key feature of the information bound that it is time-
dependent. In the past, the bound was smaller, and its effects on physics would have been 
greater. During the very early universe, the effects could have been significant, and may 
have left a trace on the structure of the universe that could be used to test the existence of 
the bound. Inflation is a brief episode of exponential expansion thought to have occurred 
at about 10–34 s after the big bang. At that time, the horizon size was about 10–47 cm, 
yielding a horizon area of about 10–19 Planck areas. The information bound (17) then 
implies a bound on the inflation factor 
 
 a(tafter)/a(tbefore) < 1019.       (18) 
 
Guth’s original proposal was for an inflation factor at least 1020, so (given the rough-and-
ready nature of the calculation) the information bound is consistent with inflation, but 
only marginally so, and a more detailed analysis may suggest observable consequences. 
 
There is a more comprehensive consistency check that I shall not consider in this paper. 
The information bound was derived using quantum field theory, but that same bound 
applies to quantum field theory. Ideally one should derive the bound using a self-
consistent treatment. If one adopts the philosophy suggested in the previous section – that 
information is primary and ontological – then such a self-consistency argument should be 
incorporated in a larger program directed at unifying mathematics and physics. If, 
following Landauer, one accepts mathematics is meaningful only if it is the product of 
real computational processes (rather than existing independently in a Platonic realm) then 
there is a self-consistent loop: the laws of physics determine what can be computed, 
which in turn determines the informational basis of those same laws of physics. Benioff 
(2002) has considered a scheme in which mathematics and the laws of physics co-emerge 
from a deeper principle of mutual self-consistency, thus addressing Wigner’s question of 
why mathematics is so ‘unreasonably effective’ in describing the physical world. I have 
discussed these deeper matters elsewhere (Davies 2006). 
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