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摘要    最近新发展的基于计算短串频度, 推断原核生物系统发生关系的 K串组分距离方法, 以
整个蛋白质组作为数据集. 采用每个物种的全部核糖体蛋白质或氨酰 tRNA 合成酶, 得到一致结
果. 已知后一组蛋白质在单个使用时, 产生彼此不同的进化树. 我们构建进化树不需做任何序列
联配, 所得亲缘树包括 16个古细菌、105个细菌和 2个真核生物. 大部分低层分支与《伯杰系统
细菌学手册》(第 2版), 即 2003年第 4次发布的细菌系统分类大纲相一致, 而且对高层分支关系
给出一些建议.  
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原核生物的系统分类因缺乏形态学特征, 而成
为微生物学中的一大挑战[1]. 20世纪 70年代, Woese
等人[2]通过联配核糖体小亚基RNA(SSU rRNA)序列
推断系统发生关系, 取得突破性进展. 他们发现生命
领域中除细菌和真核生物外还有第三个超界: 古细
菌, 而且支持了叶绿体和线粒体的内共生起源学说. 
这是rRNA构树研究的主要成就. 核糖体rRNA数据库
的建立[3,4]使得人们易于构建基于SSU rRNA的分子
系统发生树. 以至在《伯杰系统细菌学手册(简称伯杰
手册)》(第 2版)中写到: “更多的基于分析SSU rRNA

核苷酸序列而非表型特征所构建的系统发生框

架”(参看George Garrity的序言[5]). 
然而, 近年来对单独使用SSU rRNA推断系统发

生关系的可靠性产生了质疑. 这些大约有 1500 bp的
核苷酸序列, 不可能提供足够的系统发生信息来分
辨生命之树的所有分支, 甚至有证据表明这些保守
的RNA也可能存在水平转移[6,7]. 此外, 自 1995 年开
始不断增加的原核生物完全基因组, 对分子系统发
生关系的分析带来更多的问题. 因而现在的一般看
法是, 不同的基因反映不同的历史, 基因树不能等同
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于物种树. 特别是在分子系统发生学上, 基因横向传
递和世系之间保守基因的丢失已经成为讨论的热  
点[8,9]. 为了充分利用不断增加的基因组数据, 最近
发展出许多基于全基因组的方法[10,11]. 介于使用单基
因和全基因组两种极端之间, 还提出了基于联合蛋
白质序列的方法[12]. 不过, 所有这些方法在不同阶段
或明或暗地需要序列联配和打分方案, 因此依赖于
许多参数和微调.  

为了避免序列联配和对基因的特殊选择, 我们
发展了一种基于K串的组分距离方法, 从完全基因组
出发推断系统发生关系. 该方法已被成功地应用于
原核生物 [13]、叶绿体 [14]和冠状病毒 [15]的进化研究.  
然而, 使用完全基因组数据同时也可以视为这种方
法的缺点. 因此, 文中我们采用两组蛋白质, 它们包
含的系统发生信息可能十分不同. 核糖体蛋白质和
rRNA交织成复合大分子, 作为一个整体来行使功能, 
因此它们不易与别的物种发生横向传递. 用连接核
糖体蛋白质序列的方法很自然地产生合理的系统发

生关系 [10,16]. 相反, 氨酰tRNA合成酶作为独立的分
子行使功能, 在不同物种之间发生横向传递没有很
大障碍. 事实上, 人们已经知道它不适合用于系统发
生推断. 如果单独使用 20种不同的氨酰tRNA合成酶
产生 20 种不同的树, 有一些甚至不能区分开生命之
树上古细菌、细菌和真核生物三个超界[17~19]. 然而 
我们的结果表明收集一个物种所有的氨酰tRNA合成
酶可以产生与核糖体蛋白质树和全蛋白质组树[13]相

一致的系统发生树.  
本文的目的有三个方面. 第一, 说明组分距离方

法不必要求完全蛋白质组数据, 选取一个合适家族
的蛋白质序列也可行. 第二, 提供一种新的分子系统
发生分析方法, 它独立于但支持基于 SSU rRNA序列
的“标准”方法. 第三, 代替仅仅使用自举法或刀切法
的稳定性和一致性测试, 通过与细菌分类学结果的
严格比较, 验证这种新方法.  

1  材料和方法 
在NCBI数据库中存在两套原核生物基因组, 一

套位于Ganbank目录 [20]下, 是作者提交的原始序列; 
另一套经NCBI人员[21]重新整理和注释过, 索取号带

有前缀NC_以示区别. 我们使用后一套中所有的原核
生物完全基因组, 截止日期到 2003年 6月 10日; 除
去一个物种Pasteurella multocida, 因为在它的注释中
没有核糖体蛋白质和氨酰tRNA合成酶的信息. 附录
中给出物种名字、缩写、NCBI索取号以及在《伯杰
手册》中的位置.  

我们采用基于K串的组分矢量方法计算距离矩
阵, 见文献[13], 因此, 下面只给出方法的简洁概述. 
第一步, 从一个蛋白质家族或者完全基因组中收集
所有的氨基酸序列. 第二步, 计算定长为K的寡肽出
现的频度. 为了减弱在分子水平上随机中性突变的
影响和突出选择进化的后果, 用(K − 2)阶的Markov
模型从这些频度中减除随机背景. 第三步, 将这些规
范处理后的频度按固定次序排放, 为每个物种形成
一个 20K维的组分矢量. 第四步, 物种A和B的相关性
C(A, B)由两者的组分矢量之间的夹角余弦决定. 因
此, 如果两个矢量相同, 则相关性最高, C = 1; 如果
它们没有共同的组分, 则相关性C = 0, 两个矢量成
正交关系. 最后, 两个物种之间的距离可以定义为D 

= (1 − C)/2. 一旦获得了距离矩阵, 则采用标准方法
[22], 如Phylip软件包[23]中的邻接算法来构建亲缘树. 
随着K值的增加和对蛋白质序列再抽样检验, 树的拓
扑结构也趋于稳定. 关于统计检验和方法的更多介
绍参看文献[13,14].  

2  结果和讨论 
图 1 为基于核糖体蛋白质的亲缘树, 基于氨酰

tRNA合成酶的亲缘树见图 2. 计算包括所有 123个物
种, 然而由于相同种的不同菌株和同一属下不同的
种总是形成一组, 因此在最后的图中仅仅保留了每
个属下的一个物种作为代表. 因此, 图 1和 2 相当于
属的进化树.  

我们的亲缘树描述了 121个原核生物, 涵盖了 67
个属,  55个科,  46个目,  25个纲和 25个原核生物门
中的 14个门, 因而可以与细菌学家的分类做一个详尽
且更严格的比较. 事实上, 我们要和 3 种不同而又相
关的树作比较: SSU rRNA树[1], 它是一棵合成树, 包
含 253个物种; RDP-Ⅱ骨干树 8.0版[4], 包括 217个序
列, 代表《伯杰手册》(第 2 版)的 203 个科中的 187  
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图 1  基于核糖体蛋白质的原核生物分子亲缘树 
计算使用的字符串长度为 K = 5. 图中所示为 14个门中的 67个属, 每个门的名字放在靠近物种的位置. 对于具有最多已测基因组数据的变形菌
B12门 Proteobacteria, 我们将其下属的纲也标识在括弧中. 这是一棵无根树, 分支长度并没有按比例表示. 图中黑色圆点标识生命之树中三个超

界的分叉点 
 

个; 最后是《伯杰手册》本身[5,24], 它主要基于SSU 
rRNA模型, 但是也考虑了传统的分类. 

一般来说 , 基于核糖体蛋白质的亲缘树和SSU 
rRNA树的一致性较高, 而基于氨酰tRNA合成酶的亲
缘树与SSU rRNA树的一致性较低[17~19]. 然而, 后者
在本文结果中的表现远好于基于单个氨酰tRNA合成
酶的树. 特别是, 两组进化树都划分出生命领域的三

大超界, 这是它们一致的显著特征. 
由于属到科、到目的分支基本上与 SSU rRNA  

树一致, 因此我们集中讨论在不同分类水平上的差
异, 尤其是可能对分类提出修正的显著差异.  

种间的详细位置关系在属树上看不到. RDP-Ⅱ
骨干树[4]和我们的进化树(图 1和 2)都是如此, 但是有
两个细节反映在我们的更详细的物种树上. 第一, 解 
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图 2  由氨酰 tRNA合成酶集合构建的原核生物分子系统发生树 
计算使用的字符串长度为 K = 5. 其余部分同图 1 

 
脲支原体Urepa插入到另一个支原体属Mycoplasma中, 
在SSU rRNA树[21]中也存在同样的现象. 第二, 志贺
氏痢疾杆菌Shifl插入到大肠杆菌属Escherichia中. 后
者尚有待于新的SSU rRNA树的验证. 在高层分类水
平上, SSU rRNA树[21]中变形菌Proteobacteria的Beta
纲插在Gamma纲中, 这同样反映在本文和文献[13]的

亲缘树上. 进一步观察会发现Gamma纲被Beta纲隔
开的两个属(Buchnera和Wigglesworthia)拥有较小的
基因组, 后者在氨酰tRNA合成酶树(图 2)上远离主要
的Proteobacteria门. 在所有这些树中具有较小基因组
的物种, 形成处于更深层次的亚组. 小基因组自然应
该进化更早, 这可能是真实进化史的表现. 总之, 基
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因组大小所带来的影响不易清楚地表现在过去基于

单基因的进化树上. 
所有 3 个螺旋菌(Spirochetes, Burbu, Trepa和

Lepin), 虽然在图 1和《伯杰手册》中都被归为一组, 
但是在图 2和蛋白质组树[13]上, Lepin却远离螺旋菌门. 
Lepin的基因组比另外两个大很多, 不过, 我们仍然
不能断定这是否由基因组大小的显著差异所造成.  

古细菌Methanopyrus kandleri (Metka)曾在SSU 
rRNA进化树分析中, 被预测远离其他的产甲烷古细
菌[25]. 但在图 1和 2中它均和那些产甲烷菌形成一个
分支; 在它的基因组报告[26]中, 基因成分和基因对的
分析结果也表明如此. 另外, Crenarchaeota门所含的3
个属: Pyrae,  Aerpe和Sulso总是处于一个分支. 但是
Euryarchaeota门所含的Halsp和Theac所处位置不稳定, 
有时在别的树上也观察到类似行为[10,11]. 

以Oceih为代表的新属Oceanobacillus, 曾是惟一
一个跨门的差别. 在图 1和 2与K = 5, K = 6的蛋白质
组树 [13]上, 它位于B13 门(Firmicutes), 与Bacillus属
(Bergey’s代码为B13.3.1.1)的位置较近. 这同NCBI[21]

分类一致, 但是在 2002年《伯杰手册概要》[24]中却将

它分入Gammaproteobacteria (B12.3.8.1.6), 同时带着
这样一个脚注: “Oceanospirillales在ARB树上的位置
不明确”. 然而, 2003年发表的《伯杰手册概要》[27]将

Oceih移动到B13.3.1.1.12, 相应地, 附录表 2 中Oceih
也已调整到它的正确位置.  

我们将简要地提一下高层分支问题. 高层分支
的划分和定位远非原核生物而是一般分类上的常见

争论问题. 在诸如《伯杰手册》的分类系统中, 许多
门并列于古细菌和细菌超界之下. 将文献[13]和本文 

的进化树与SSU rRNA树[1], RDP-Ⅱ骨干树[4], 与别的
全基因组方法[10,11]获得的进化树相比较, 能够识别出
一批这些进化树在高层分支上的共同特征, 因而它
们不像是偶然的假象. (ⅰ) 两个门Aquificae (B1)和
Thermotogae (B2)总是紧密相连, 形成一个分支, 然
后再加入进化树的主干 . (ⅱ ) Chlorobi (B11)和
Bacteroides (B20)门先聚成一个分支, 在文献[1]和[19]
中也是如此. (ⅲ) Chlamydiae (B16)门和Spirochaetes 
(B17)门连接到进化树的分支点总是相距很近(除了一
些进化树上Lepin远离B17 的例外). (ⅳ) Deinococ-
cus-Thermus (B4)和Actinobacteria (B14)在许多进化
树上出现在一起. (ⅴ) Mycoplasma属独立于Firmicutes 
(B13)门, 形成单独的分支, 在许多全基因组树包括
我们的进化树上, 这都是一个显著特征.  

然而, 应该注意到目前 14 个门中有 6 个门仅有
一个代表物种, 以后有广阔分类背景的基因组数据
时, 高层分支的关系将进一步得到验证. 组分距离方
法作为一种新的推断系统发生关系的方法, 无需序
列联配和参数调节, 它和传统的SSU rRNA[1]分析一

起应能给出原核生物分类的统一的分子基础.  
 

附录: 我们的工作中使用了 16 个古细菌、105 个细  
菌和 2个真核生物的数据, 所有物种的名字、缩写和
索取号列于下面的表 1~3中. 表 1和 2的最后一列的
Berger’s 代码, 是《伯杰细菌系统学手册》(第 2 版)
的分类缩写. 例如, EcoliK 属于门 BⅫ  (Proteobacte- 
ria)、纲Ⅲ(Gammaproteobacteria)、目ⅩⅢ (Enteroba- 
cteriales)、科Ⅰ(Enterobacteriaceae)和属Ⅰ(Echerichia). 
我们把罗马数字换成阿拉伯数字, 去掉分类中的拉
丁名字, 将它缩写为 B12.3.13.1.1.  

 
表 1  16个古细菌的名字、缩写和 NCBI索取号(按 Bergey’s代码排序) 

         古细菌名字 缩写 索取号 Bergey’s代码 
Pyrobaculum aerophilum Pyrae NC_003364 A1.1.1.1.1 
Aeropyrum pernix K1 Aerpe NC_000854 A1.1.2.1.3 
Sulfolobus solfataricus Sulso NC_002754 A1.1.3.1.1 
Sulfolobus tokodaii Sulto NC_003106 A1.1.3.1.1 
Methanobacterium thermoautotrophicus Metth NC_000916 A2.1.1.1.1 
Methanococcus jannaschii Metja NC_000909 A2.2.1.1.1 
Methanosarcina acetivorans str. C2A Metac NC_003552 A2.2.3.1.1 
Methanosarcina mazei Goel Metma NC_003901 A2.2.3.1.1 
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   续表 1  
         古细菌名字 缩写 索取号 Bergey’s代码 
Halobacterium sp. NRC-1 Halsp NC_002607 A2.3.1.1.1 
Thermoplasma acidophilum Theac NC_002578 A2.4.1.1.1 
Thermoplasma volcanium Thevo NC_002689 A2.4.1.1.1 
Pyrococcus abyssi Pyrab NC_000868 A2.5.1.1.3 
Pyrococcus furiosus Pyrfu NC_003413 A2.5.1.1.3 
Pyrococcus horikoshii Pyrho NC_000961 A2.5.1.1.3 
Archaeoglobus fulgidus Arcfu NC_000917 A2.6.1.1.1 
Methanopyrus kandleri AV19 Metka NC_003551 A2.7.1.1.1 

 
表 2  105个细菌的名字、缩写和NCBI索取号(按Bergey’s代码排序)a)

          细菌名字 缩写  索取号 Bergey’s代码 
Aquifex aeolicus Aquae NC_000918 B1.1.1.1.1 
Thermotoga maritima Thema NC_000853 B2.1.1.1.1 
Deinococcus radiodurans R1 Deira NC_001263-64 B4.1.1.1.1 
Thermosynechococcus elongatus BP-1 Theel NC_004113 B10.1.a)

Synechocystis PCC6803 Synpc NC_000911 B10.1.1.1.14 
Nostoc sp. PCC7120 Anasp NC_003272 B10.1.4.1.8 
Chlorobium tepidum TLS Chlte NC_002932 B11.1.1.1.1 
Rickettsia conorii Riccn NC_003103 B12.1.2.1.1 
Rickettsia prowazekii Ricpr NC_000963 B12.1.2.1.1 
Caulobacter crescentus Caucr NC_002696 B12.1.5.1.1 
Agrobacterium tumefaciens C58 Cereon Agrt5 NC_003062-63 B12.1.6.1.2 
Agrobacterium tumefaciens C58 UWash Agrt5W NC_003304-05 B12.1.6.1.2 
Sinorhizobium meliloti 1021 Rhime NC_003047 B12.1.6.1.6 
Brucella melitensis Brume NC_003317-18 B12.1.6.3.1 
Brucella suis 1330 Brusu NC_004310-11 B12.1.6.3.1 
Mesorhizobium loti Rhilo NC_002678 B12.1.6.4.6 
Bradyrhizobium japonicum Braja NC_004463 B12.1.6.7.1 
Ralstonia solanacearum Ralso NC_003295-96 B12.2.1.2.1 
Neisseria meningitidis MC58 NeimeM NC_003112 B12.2.4.1.1 
Neisseria meningitidis Z2491 NeimeZ NC_003116 B12.2.4.1.1 
Nitrosomonas europaea ATCC 19718 Niteu NC_004757 B12.2.5.1.1 
Xanthomonas axonopodis citri 306 Xanax NC_003919 B12.3.3.1.1 
Xanthomonas campestris ATCC 33913 Xanca NC_003902 B12.3.3.1.1 
Xylella fastidiosa Xylfa NC_002488 B12.3.3.1.9 
Xylella fastidiosa Temecula1 Xylft NC_004556 B12.3.3.1.9 
Coxiella burnetii RSA 493 Coxbu NC_002971 B12.3.6.2.1 
Pseudomonas aeruginosa PA01 Pseae NC_002516 B12.3.9.1.1 
Pseudomonas putida KT2440 Psepu NC_002947 B12.3.9.1.1 
Pseudomonas syringae pv tomato str.DC3000 Psesy NC_004578 B12.3.9.1.1 
Shewanella oneidensis MR-1 Sheon NC_004347 B12.3.10.1.7 
Vibrio cholerae Vibch NC_002505-06 B12.3.11.1.1 
Vibrio parahaemolyticus RIMD 2210633 Vibpa NC_004603.05 B12.3.11.1.1 
Vibrio vulnificus CMCP6 Vibvu NC_004459-60 B12.3.11.1.1 
Buchnera aphidicola Sg Bucap NC_004061 B12.3.13.1.5 
Buchnera aphidicola (Baizongia pistaciae) Bucbp NC_004545 B12.3.13.1.5 
Buchnera sp. APS Bucai NC_002528 B12.3.13.1.5 
Escherichia coli CFT073 EcoliC NC_004431 B12.3.13.1.13 
Escherichia coli K12 EcoliK NC_000913 B12.3.13.1.13 
Escherichia coli O157:H7 EcoliO NC_002695 B12.3.13.1.13 
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   续表 2  
          细菌名字 缩写  索取号 Bergey’s代码 
Escherichia coli O157:H7 EDL933 EcoliE NC_002655 B12.3.13.1.13 
Salmonella typhi Salti NC_003198 B12.3.13.1.32 
Salmonella typhi Ty2 SaltiT NC_004631 B12.3.13.1.32 
Salmonella typhimurium LT2 Salty NC_003197 B12.3.13.1.32 
Shigella flexneri 2a str. 2457T Shifl2 NC_004741 B12.3.13.1.34 
Shigella flexneri 2a str. 301 Shifl NC_004337 B12.3.13.1.34 
Wigglesworthia brevipalpis Wigbr NC_004344 B12.3.13.1.38 
Yersinia pestis strain C092 YerpeC NC_003143 B12.3.13.1.40 
Yersinia pestis KIM YerpeK NC_004088 B12.3.13.1.40 
Haemophilus influenzae Rd Haein NC_000907 B12.3.14.1.3 
Campylobacter jejuni Camje NC_002613 B12.5.1.1.1 
Helicobacter pylori 26695 Helpy NC_000915 B12.5.1.2.1 
Helicobacter pylori J99 Helpj NC_000921 B12.5.1.2.1 
Clostridium acetobutylicum ATCC824 Cloab NC_003030 B13.1.1.1.1 
Clostridium perfringens Clope NC_003366 B13.1.1.1.1 
Clostridium tetani E88 Clote NC_004557 B13.1.1.1.1 
Thermoanaerobacter tengcongensis Thete NC_003869 B13.1.2.1.8 
Mycoplasma genitalium Mycge NC_000908 B13.2.1.1.1 
Mycoplasma penetrans Mycpe NC_004432 B13.2.1.1.1 
Mycoplasma pneumoniae Mycpn NC_000912 B13.2.1.1.1 
Mycoplasma pulmonis UAB CTIP Mycpu NC_002771 B13.2.1.1.1 
Ureaplasma urealyticum Urepa NC_002162 B13.2.1.1.4 
Bacillus anthracis str. Ames Bacan NC_003997 B13.3.1.1.1 
Bacillus cereus ATCC 14579 Bacce NC_004722 B13.3.1.1.1 
Bacillus halodurans Bachd NC_002570 B13.3.1.1.1 
Bacillus subtilis Bacsu NC_000964 B13.3.1.1.1 
Oceanobacillus iheyensis Oceih NC_004193 B13.3.1.1.12 
Listeria innocua Lisin NC_003212 B13.3.1.4.1 
Listeria monocytogenes EGD-e Lismo NC_003210 B13.3.1.4.1 
Staphylococcus aureus Mu50 StaauM NC_002758 B13.3.1.5.1 
Staphylococcus aureus MW2 StaauW NC_003923 B13.3.1.5.1 
Staphylococcus aureus N315 StaauN NC_002745 B13.3.1.5.1 
Staphylococcus epidermidis ATCC 12228 Staep NC_004461 B13.3.1.5.1 
Lactobacillus plantarum WCFS1 Lacpl NC_004567 B13.3.2.1.1 
Enterococcus faecalis V583 Entfa NC_004668 B13.3.2.4.1 
Streptococcus agalactiae 2603V/R StragV NC_004116 B13.3.2.6.1 
Streptococcus agalactiae NEM316 StragN NC_004368 B13.3.2.6.1 
Streptococcus mutans UA159 Strmu NC_004350 B13.3.2.6.1 
Streptococcus pneumoniae R6 StrpnR NC_003098 B13.3.2.6.1 
Streptococcus pneumoniae TIGR4 StrpnT NC_003028 B13.3.2.6.1 
Streptococcus pyogenes MGAS315 StrpyG NC_004070 B13.3.2.6.1 
Streptococcus pyogenes MGAS8232 Strpy8 NC_003485 B13.3.2.6.1 
Streptococcus pyogenes SF370 StrpyS NC_002737 B13.3.2.6.1 

Streptococcus pyogenes SSI-1 StrpyI NC_004606 B13.3.2.6.1 

Lactococcus lactis sp. IL1403 Lacla NC_002662 B13.3.2.6.2 

Corynebacterium efficiens YS-314 Coref NC_004369 B14.(1.5).(1.7).1.1 

Corynebacterium glutamicum Corgl NC_003450 B14.(1.5).(1.7).1.1 

Mycobacterium leprae TN Mycle NC_002677 B14.(1.5).(1.7).4.1 

Mycobacterium tuberculosis CDC1551 MyctuC NC_002755 B14.(1.5).(1.7).4.1 

Mycobacterium tuberculosis H37Rv MyctuH NC_000962 B14.(1.5).(1.7).4.1 
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   续表 2  
          细菌名字 缩写  索取号 Bergey’s代码 

Tropheryma whipplei TW08/27 Trow8 NC_004551 B14.(1.5).(1.9).6.3 

Tropheryma whipplei Twist Trowt NC_004572 B14.(1.5).(1.9).6.3 

Streptomyces avermitilis MA-4680 Straw NC_003155 B14.(1.5).(1.11).1.1 

Streptomyces coelicolor A3(2) Strco NC_003888 B14.(1.5).(1.11).1.1 

Bifidobacterium longum NCC2705 Biflo NC_004307 B14.(1.5).2.1.1 

Chlamydia muridarum Chlmu NC_002620 B16.1.1.1.1 

Chlamydia trachomatis Chltr NC_000117 B16.1.1.1.1 

Chlamydophila caviae GPIC Chlcv NC_003361 B16.1.1.1.2 

Chlamydophila pneumoniae AR39 ChlpnA NC_002179 B16.1.1.1.2 

Chlamydophila pneumoniae CWL029 ChlpnC NC_000922 B16.1.1.1.2 

Chlamydophila pneumoniae J138 ChlpnJ NC_002491 B16.1.1.1.2 

Borrelia burgdorferi Borbu NC_001318 B17.1.1.1.2 

Treponema pallidum Trepa NC_000919 B17.1.1.1.9 

Leptospira interrogans serovar lai str. 56601 Lepin NC_004342-43 B17.1.1.3.2 

Bacteroides thetaiotaomicron VPI-5482 Bactn NC_004663 B20.1.1.1.1 

Fusobacterium nucleatum ATCC 25586 Fusnu NC_003454 B21.1.1.1.1 

a)《伯杰手册》中并没有给出物种的完整世系 

 
表 3  两个真核生物的名字、缩写和 NCBI索取号 

2个真核生物 缩写 索取号 
Schizosaccharomyces pombe Pombe NC_003421.23.24 
Caenorhabitidis elegans  Worm NC_003279-84 
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