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Abstract

A representation of frequency of strings of length K in complete genomes of many organisms in a square has led to seemingly self-
similar patterns when K increases. These patterns are caused by under-represented strings with a certain “tag”-string and they define
some fractals in the K — oo limit. The Box and Hausdorff dimensions of the limit set are discussed. Although the method proposed by
Mauldin and Williams to calculate Box and Hausdorff dimension is valid in our case, a different and sampler method is proposed in
this paper. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past decade or so there has been a ground swell of interest in unraveling the mysteries of DNA.
The heredity information of organisms (except for so-called RNA-viruses) is encoded in their DNA se-
quence which is a one-dimensional unbranched polymer made of four different kinds of monomers (nu-
cleotides): adenine (), cytosine (c¢), guanine (g), and thymine (¢). As long as the encoded information is
concerned we can ignore the fact that DNA exists as a double helix of two “conjugated” strands and only
treat it as a one-dimensional symbolic sequence made of the four letters from the alphabet ¥ = {a,c, g,t}.
Since the first complete genome of a free-living bacterium Mycoplasma genitalium was sequenced in 1995
[3], an ever-growing number of complete genomes has been deposited in public databases. The availability
of complete genomes opens the possibility to ask some global questions on these sequences. One of the
simplest conceivable questions consists in checking whether there are short strings of letters that are absent
or under-represented in a complete genome. The answer is in the affirmative and the fact may have some
biological meaning [5].

The reason why we are interested in absent or under-represented strings is twofold. First of all, this is a
question that can be asked only nowadays when complete genomes are at our disposal. Second, the
question makes sense as one can derive a factorizable language from a complete genome which would be
entirely defined by the set of forbidden words.

We start by considering how to visualize the avoided and under-represented strings in a bacterial genome
whose length is usually the order of a million letters.

Hao et al. [5] proposed a simple visualization method based on counting and coase-graining the fre-
quency of appearance of strings of a given length. When applying the method to all known complete
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genomes, fractal-like patterns emerge. The fractal dimensions are basic and important quantities to
characterize the fractal. One will naturally ask the question: what are the fractal dimensions of the fractals
related to languages defined by tagged strings? In this paper we will answer the question.

2. Graphical representation of counters

We call any string made of K letters from the set {g, c,a, ¢} a K-string. For a given K there are in total 4¢
different K-strings. In order to count the number of each kind of K-strings in a given DNA sequence 4
counters are needed. These counters may be arranged as a 25 x 2% square, as shown in Fig. 1 for K = 1 to 3.

In fact, for a given K the corresponding square may be represented as a direct product of K copies of
identical matrices:

M(K):M®M®---®M,

where each M is a 2 x 2 matrix:

w-[ad)
a t
which represents the K = 1 square in Fig. 1. For convenience of programming, we use binary digits 0 and 1

as subscripts for the matrix elements, i.e., let My, = g, My = ¢, M1y = a, and M, = ¢. The subscripts of a
general element of the 2X x 2% direct product matrix M%),

(K)

MI‘J =M, My, - - - My,

are given by I = iji,---ig and J = jij, - - - jx. These may be easily calculated from an input DNA sequence
S18283 - - SKSK41 "

where s; € {g,c,a,t}. We call this 28 x 2% square a K-frame. Put in a frame of fixed K and described by a
color code biased towards small counts, each bacterial genome shows a distinctive pattern which indicates
on absent or under-represented strings of certain types [5]. For example, many bacteria avoid strings
containing the string ctag. Any string that contains ctag as a substring will be called a ctag-tagged string. If
we mark all ctag-tagged strings in frames of different K, we get pictures as shown in Fig. 2. We also note
that bacterium Aquifex aeolius [1] avoid strings containing the string gcgc. The large scale structure of these
pictures persists but more details appear with growing K. Excluding the area occupied by these tagged
strings, one gets a fractal F'in the K — oo limit. It is natural to ask what are the fractal dimensions of F for
a given tag.

In fact, this is the dimension of the complementary set of the tagged strings. The simplest case is that of
g-tagged strings. As the pattern has an apparently self-similar structure the dimension is easily calculated to
be

ggg ggc geg gecicgg cgcicegicec
gg gc cg cc |
i gga ggt gca geticga cgt cca cct

gag gac gtgi gicicagicacictgi ctc

.............................................................................................................................................

agg agc acg accg tggitgciteg: tec

t aga agtaca actitga tgtitca tct

aag aac atg atcitaq tac: ttg | ttc

: i aaa aat ata| attitaa tat| tta| tit
=1 K=2 K=3

Fig. 1. The arrangement of string counters for K = 1 to 3 in squares of the same size.
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K:

{a,c,g,t}. Let 2* denotes the collection of all

possible strings made of letters from X, including the empty string e. We call any subset L C X* a language

over the alphabet X. Any string over X is called a word. If we denote the given tag as wy, for our case,

8

Fig. 2. ctag-tagged strings in K = 6 to 9 frames.

K=

log3
log?2’

logay
log ok

f fractals

lim
K—oo —

{word which does not contain any of element of B as factor}.

{word which does not contain w, as factor}.

1mension o

Ly

L
When we discuss the Box dimension, we can consider more general case, i.e., the case of more than one

tag. We denote the set of tags as B, and assume that there has not one element being factor of any other

element in B. We define

In formal language theory, we starts with alphabet X
Now let ax be the number of all strings of length K that belong to language L;. As the linear size x in the

where dimy(F) and dimg(F) are the Hausdorff and Box dimensions [2] of F.
K-frame is 1/2%, the Box dimension of F may be calculated as

F is called the fractal related to language L.

3. Box d
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Now we define the generating function of ag as
f(S) = Z aKSK7
k=0

where s is a complex variable.
First L, is a dynamic language, from Theorem 2.5.2 of Ref. [6,9], we have

lim a*  exists, we denote it as /. (2)

K—oo

From (1), we have

log/
dimg(F) = ——. 3
5F) = foey ()
For any word w = wyw, ... w,,w; € X fori =1,...,n, we denote
Head(w) = {wi, wiwy, wiwaws, ..., wiwy ... w,_1 },
Tall(w) = {Wna Wi iWny, Wy 2Wp1Wys oo, WaW3 L Wn}'

For given two words u and v, we denote overlap(u,v) = Tail(u) N Head(v). If x € Head(v), then we can
write v = xx’. We denote x' = v/x and define

u:v= E s‘”/’(‘,

xeoverlap(u,v)

where |v/x| is the length of word v/x. From Golden—Jackson Cluster method [4,8], we can know that

1
1 —4s — weight(%)’

where weight(%) = >

f(s)

weight(%[v]) and weight(%[v]) (v € B) are solutions of the linear equations:

veB

weight(%[v]) = —sI'! — (v : v)weight(%[v]) — Z(u : v)weight(€[u]).
ito
It is easy to see that f(s) is a rational function. Its maximal analytic disc at center 0 has radius |so|, where s¢
is the minimal module zero point of 1/f(s). On the other hand, according to the Cauchy criterion of
convergence we have 1// is the radius of convergence of series expansion of f(s). Hence |so| = 1/. From
(3), we obtain the following result.

Theorem 3.1. The Box dimension of F is

_ log |so|

dlmB(F) = logz s

where sq is the minimal module zero point of 1/f(s) and f(s) is the generating function of language L,.

In particular, the case of a single tag — B contains only one word — is easily treated and some of the
results are shown in Table 1.

4. Hausdorff dimension of fractals

We obtained the Box dimension of F in the previous section. Now one will naturally ask whether the
Hausdorff dimension of F equals to the Box dimension of it. In this section we will discuss the Hausdorff
dimension of F. Now we only discuss the case of B contains only one word w,. From the K-frames
(K = |wol, [wo| +1,...), we can find:
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Table 1
Generating function and dimension for some single tags

Tag /) D

g 1 log3
1 —3s log2

gc 1 1.89997
1 —4s+5?

gg las 1.92269
1 —3s — 32

get 1 1.97652
1 —4s+s

gcg 14g 1.978
1 —4s + s — 353

888 lists 1.98235
1 — 35 — 352 — 353

ctag 1 1.99429
1 —4s+s*

ggcg l+g 1.99438
1 —4s+ 3 — 3s*

gcge l4g 1.99463
1 —ds+ 52 —4s3 + 54

gggg 1.99572

1 +s5+s>+5°
1 —3s — 352 — 353 — 35

Proposition 4.1.

log3 . . log (4™l — 1)
—— < < {—=
log2 < dimy (F) < dimg(F) < log2
Now we denote o = —log|so|/log2 and ax = logay® /log?2.

For any word w = wyw; - - - wg, we denote £, ,,,..., the corresponding close square in K-frame and denote

F= )

w=wwy-wg €L

then F = limg_ . Fx.

We first prove dimy (F) = dimp(F) under a condition using elementary method.

F,

WIW WK 9

Lemma 4.1. Suppose E C R* with |E| < 1/2, let

Bl = {W =WWy - Wg € L: ‘FW]WZ'“WK| < |E‘ < |FWIW2'“WK—1| and E QEVIWZH.WK 7£ @}7

then #B, < 2.
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Proof. Note that for each w = wyw, - - - wx € B
1W2"'W1<7|| _

£ |E5 !
< =3
|FW1WZ.HWK| |Ev1w2~~wk| 2

then |E| < %|FWIWZH.WK |. The interiors of Fy, ..oy With w = wyw, - - - wg € By are non-overlapping and all lie in
a disc with radius 2|E|, and all F,,,,...,, are squares, hence

1

2
QI 7> (5 Pl ) #5812 5 CIE) 45,

(NS}

|
V2
hence #B; <2n. O
For any w = wy ---wy,,r € X, we denote w * r = w; - - - w),» and define v,, = v, v, - - - Vi where
2% /4 if#{reZ: ww,---wiyrel}=4
Y273 i #{reX: wiwy-wirel} =3
We assume
(C1) Vi = Vi Viy Vi, < M (a constant) for any w € L.

Now we have the following result.

Theorem 4.1. Under condition (Cy), we have
dimp(F) =dimg(F) =a and 0 < H*(F) < o0,
where #*(F) is the Hausdorff measure of F.
Proof. We first prove that
H*(F) < oo. (4)

Since ax — a as K — oo, for any small ¢ > 0, there exists an integer N > 0 such that for any K > N, we have
o > o — & Hence

lex lK(oq(fs) lst 17(N+l)1»:
LZSeelmas) wa(l) = () <) e

Hence #*(F) < oo.
Now we want to prove #*(F) > 0. We denote

2={t=11: |t]=ccand 1;---1¢ € Lfor K =1,2,...}.
For any t = 717, --- € 2*, we denote 1|, = 11175 - - - 7x, and define a probability measure z on X by

o
u(w)) = (%) Vi, Wwhere w]={re€2¥: 1|, =w}

We can see

B 1 (Jwl+1)a 1 [w]o 1\* 1 [w]o N
Y ated= ¥ (5) = (5) w ¥ (5)v=(5) wen

There exists a natural continuous map f from X* to F. Now we transfer i to a probability measure on F, let
u=Tiof'. We will show that there is some constant M, > 0 such that if E is a Borel subset of R* with
|E| < 1/2, then u(E) < M;|E|". Of course, this inequality implies #*(F) > 1/M, > 0.
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Set
Bi={w=wwy---wg €L: |Fypyone| <|E| <|Fyjwyrg,| a0d ENFE, e # 0}
Then
W(E) < ST Fi10]) B Fupy g [Py SHBIE v, <2nMIEF = MEF. O

weB]

Theorem 4.2. If the length of tag |wy| = 3 and for any w € L, v,, has the form

B G E)
TV EIE) -

where i1,i, and iy are positive integers, then dimy(F) = dimg(F) = o and 0 < #*(F) < oo.

or

Proof. Since |wy| = 3, we have o > log12/21og2, hence

5)E)-

From the other condition, we know that there exists M; = max{(2%/3), 1} such that v,, < M, for any w € L.
Then from Theorem 4.1, we can obtain our result of this theorem. [

Example. wy, = ctg or wy = ctag, the result dimy(F) = dimg(F) holds.

If we do not have condition (Cj), in the following we still can obtain dimy (F) = dimg(F).
We define B, = {u € X* | |u| = |wy|,u # wo}. One can know the set B, contains N; = 4"/ — 1 elements,
hence we can write B, = {u;,uz,...,uy, }. Now we can define an N, x N; matrix .« by

o = [ti,j]i,jgzvla
where t;; = (1/2)’J if u; = rix and u; = xr, with |x| = |wo| — 1,71,7, € 2, and t;; = 0 otherwise, and where f§
satisfies @(f) = | with @(f) being the largest nonnegative eigenvalue of .«/. Then from the results of Ref.
[7], we have the following theorem.

Theorem 4.3. If B = {w}, then
dimy(F) =dimg(F) = and 0< H*(F) < 0.

From Theorems 3.1 and 4.1, we have the following result.

Corollary 4.1. If B = {wy}, then
p = dimy(F) = dimg(F) = a.

Remark. When B contains more than one word, we can also construct a matrix .« similarly, then from the
results of Ref. [7], we can obtain the same conclusions of Theorem 4.3 and Corollary 4.1 for this case. From
Corollary 4.1, we have two methods to calculate the Hausdorff and Box dimensions of F, i.e., calculate «
and f, respectively.
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