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Abstract

A representation of frequency of strings of length K in complete genomes of many organisms in a square has led to seemingly self-

similar patterns when K increases. These patterns are caused by under-represented strings with a certain ``tag''-string and they de®ne

some fractals in the K !1 limit. The Box and Hausdor� dimensions of the limit set are discussed. Although the method proposed by

Mauldin and Williams to calculate Box and Hausdor� dimension is valid in our case, a di�erent and sampler method is proposed in

this paper. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past decade or so there has been a ground swell of interest in unraveling the mysteries of DNA.
The heredity information of organisms (except for so-called RNA-viruses) is encoded in their DNA se-
quence which is a one-dimensional unbranched polymer made of four di�erent kinds of monomers (nu-
cleotides): adenine (a), cytosine (c), guanine (g), and thymine (t). As long as the encoded information is
concerned we can ignore the fact that DNA exists as a double helix of two ``conjugated'' strands and only
treat it as a one-dimensional symbolic sequence made of the four letters from the alphabet R � fa; c; g; tg.
Since the ®rst complete genome of a free-living bacterium Mycoplasma genitalium was sequenced in 1995
[3], an ever-growing number of complete genomes has been deposited in public databases. The availability
of complete genomes opens the possibility to ask some global questions on these sequences. One of the
simplest conceivable questions consists in checking whether there are short strings of letters that are absent
or under-represented in a complete genome. The answer is in the a�rmative and the fact may have some
biological meaning [5].

The reason why we are interested in absent or under-represented strings is twofold. First of all, this is a
question that can be asked only nowadays when complete genomes are at our disposal. Second, the
question makes sense as one can derive a factorizable language from a complete genome which would be
entirely de®ned by the set of forbidden words.

We start by considering how to visualize the avoided and under-represented strings in a bacterial genome
whose length is usually the order of a million letters.

Hao et al. [5] proposed a simple visualization method based on counting and coase-graining the fre-
quency of appearance of strings of a given length. When applying the method to all known complete

www.elsevier.nl/locate/chaos

Chaos, Solitons and Fractals 11 (2000) 2215±2222

q This work was partially supported by Chinese Natural Science Foundation and Chinese Postdoctoral Science Foundation.
* Corresponding author.

0960-0779/00/$ - see front matter Ó 2000 Elsevier Science Ltd. All rights reserved.

PII: S 0 9 6 0 - 0 7 7 9 ( 9 9 ) 0 0 1 4 1 - 1



genomes, fractal-like patterns emerge. The fractal dimensions are basic and important quantities to
characterize the fractal. One will naturally ask the question: what are the fractal dimensions of the fractals
related to languages de®ned by tagged strings? In this paper we will answer the question.

2. Graphical representation of counters

We call any string made of K letters from the set fg; c; a; tg a K-string. For a given K there are in total 4K

di�erent K-strings. In order to count the number of each kind of K-strings in a given DNA sequence 4K

counters are needed. These counters may be arranged as a 2K � 2K square, as shown in Fig. 1 for K � 1 to 3.
In fact, for a given K the corresponding square may be represented as a direct product of K copies of

identical matrices:

M �K� � M 
M 
 � � � 
M ;

where each M is a 2� 2 matrix:

M � g c
a t

� �
;

which represents the K � 1 square in Fig. 1. For convenience of programming, we use binary digits 0 and 1
as subscripts for the matrix elements, i.e., let M00 � g, M01 � c, M10 � a, and M11 � t. The subscripts of a
general element of the 2K � 2K direct product matrix M �K�,

M �K�
I ;J � Mi1j1

Mi2j2
� � �MiK jK ;

are given by I � i1i2 � � � iK and J � j1j2 � � � jK . These may be easily calculated from an input DNA sequence

s1s2s3 � � � sKsK�1 � � � ;
where si 2 fg; c; a; tg. We call this 2K � 2K square a K-frame. Put in a frame of ®xed K and described by a
color code biased towards small counts, each bacterial genome shows a distinctive pattern which indicates
on absent or under-represented strings of certain types [5]. For example, many bacteria avoid strings
containing the string ctag. Any string that contains ctag as a substring will be called a ctag-tagged string. If
we mark all ctag-tagged strings in frames of di�erent K, we get pictures as shown in Fig. 2. We also note
that bacterium Aquifex aeolius [1] avoid strings containing the string gcgc. The large scale structure of these
pictures persists but more details appear with growing K. Excluding the area occupied by these tagged
strings, one gets a fractal F in the K !1 limit. It is natural to ask what are the fractal dimensions of F for
a given tag.

In fact, this is the dimension of the complementary set of the tagged strings. The simplest case is that of
g-tagged strings. As the pattern has an apparently self-similar structure the dimension is easily calculated to
be

Fig. 1. The arrangement of string counters for K � 1 to 3 in squares of the same size.
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dimH�F � � dimB�F � � log 3

log 2
;

where dimH�F � and dimB�F � are the Hausdor� and Box dimensions [2] of F.
In formal language theory, we starts with alphabet R � fa; c; g; tg. Let R� denotes the collection of all

possible strings made of letters from R, including the empty string �. We call any subset L � R� a language
over the alphabet R. Any string over R is called a word. If we denote the given tag as w0, for our case,

L � fword which does not contain w0 as factorg:
F is called the fractal related to language L.

3. Box dimension of fractals

When we discuss the Box dimension, we can consider more general case, i.e., the case of more than one
tag. We denote the set of tags as B, and assume that there has not one element being factor of any other
element in B. We de®ne

L1 � fword which does not contain any of element of B as factorg:
Now let aK be the number of all strings of length K that belong to language L1. As the linear size dK in the
K-frame is 1=2K , the Box dimension of F may be calculated as

dimB�F � � lim
K!1

log aK

ÿ log dK
� lim

K!1
log a1=K

K

log 2
: �1�

Fig. 2. ctag-tagged strings in K � 6 to 9 frames.
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Now we de®ne the generating function of aK as

f �s� �
X1
K�0

aKsK ;

where s is a complex variable.
First L1 is a dynamic language, from Theorem 2.5.2 of Ref. [6,9], we have

lim
K!1

a1=K
K exists; we denote it as l: �2�

From (1), we have

dimB�F � � log l
log 2

: �3�

For any word w � w1w2 . . . wn;wi 2 R for i � 1; . . . ; n, we denote

Head�w� � fw1;w1w2;w1w2w3; . . . ;w1w2 . . . wnÿ1g;
Tail�w� � fwn;wnÿ1wn;wnÿ2wnÿ1wn; . . . ;w2w3 . . . wng:

For given two words u and v, we denote overlap�u; v� � Tail�u� \Head�v�. If x 2 Head�v�, then we can
write v � xx0. We denote x0 � v=x and de®ne

u : v �
X

x2overlap�u;v�
sjv=xj;

where jv=xj is the length of word v=x. From Golden±Jackson Cluster method [4,8], we can know that

f �s� � 1

1ÿ 4sÿ weight�C� ;

where weight�C� �Pv2B weight�C�v�� and weight�C�v�� (v 2 B) are solutions of the linear equations:

weight�C�v�� � ÿsjvj ÿ �v : v�weight�C�v�� ÿ
X
u 6�v
u2B

�u : v�weight�C�u��:

It is easy to see that f �s� is a rational function. Its maximal analytic disc at center 0 has radius js0j, where s0

is the minimal module zero point of 1=f �s�. On the other hand, according to the Cauchy criterion of
convergence we have 1=l is the radius of convergence of series expansion of f �s�. Hence js0j � 1=l. From
(3), we obtain the following result.

Theorem 3.1. The Box dimension of F is

dimB�F � � ÿ log js0j
log 2

;

where s0 is the minimal module zero point of 1=f �s� and f �s� is the generating function of language L1.

In particular, the case of a single tag ± B contains only one word ± is easily treated and some of the
results are shown in Table 1.

4. Hausdor� dimension of fractals

We obtained the Box dimension of F in the previous section. Now one will naturally ask whether the
Hausdor� dimension of F equals to the Box dimension of it. In this section we will discuss the Hausdor�
dimension of F. Now we only discuss the case of B contains only one word w0. From the K-frames
(K � jw0j; jw0j � 1; . . .), we can ®nd:
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Proposition 4.1.

log 3

log 2
6 dimH�F �6 dimB�F �6 log�4jw0j ÿ 1�

log 2
< 2:

Now we denote a � ÿ log js0j= log 2 and aK � log a1=K
K = log 2.

For any word w � w1w2 � � �wK , we denote Fw1w2���wK the corresponding close square in K-frame and denote

FK �
\

w�w1w2���wK2L

Fw1w2���wK ;

then F � limK!1 FK .
We ®rst prove dimH�F � � dimB�F � under a condition using elementary method.

Lemma 4.1. Suppose E � R2 with jEj < 1=2, let

B1 � fw � w1w2 � � �wK 2 L : jFw1w2���wK j < jEj6 jFw1w2���wKÿ1
j and E \ Fw1w2���wK 6� ;g;

then #B16 2p.

Table 1

Generating function and dimension for some single tags

Tag f �s� D

g
1

1ÿ 3s
log 3

log 2

gc
1

1ÿ 4s� s2

1.89997

gg
1� s

1ÿ 3sÿ 3s2

1.92269

gct
1

1ÿ 4s� s3

1.97652

gcg
1� s2

1ÿ 4s� s2 ÿ 3s3

1.978

ggg
1� s� s2

1ÿ 3sÿ 3s2 ÿ 3s3

1.98235

ctag
1

1ÿ 4s� s4

1.99429

ggcg
1� s3

1ÿ 4s� s3 ÿ 3s4

1.99438

gcgc
1� s2

1ÿ 4s� s2 ÿ 4s3 � s4

1.99463

gggg
1� s� s2 � s3

1ÿ 3sÿ 3s2 ÿ 3s3 ÿ 3s4

1.99572
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Proof. Note that for each w � w1w2 � � �wK 2 B1

jEj
jFw1w2���wK j

6 jFw1w2���wKÿ1
j

jFw1w2���wK j
� 1

2
;

then jEj6 1
2
jFw1w2���wK j. The interiors of Fw1w2���wK with w � w1w2 � � �wK 2 B1 are non-overlapping and all lie in

a disc with radius 2jEj, and all Fw1w2���wK are squares, hence

�2jEj�2pP
1���
2
p jFw1w2���wK j

� �2

#B1 P
1

2
�2jEj�2#B1;

hence #B16 2p. �

For any w � w1 � � �wjwj; r 2 R, we denote w � r � w1 � � �wjwjr and de®ne mw � mw1
mw2
� � � mwjwj , where

mwj �
2a=4 if #fr 2 R : w1w2 � � �wjÿ1r 2 Lg � 4

2a=3 if #fr 2 R : w1w2 � � �wjÿ1r 2 Lg � 3

(
We assume

�C1� mw � mw1
mw2
� � � mwjwj < M �a constant� for any w 2 L:

Now we have the following result.

Theorem 4.1. Under condition �C1�, we have

dimH�F � � dimB�F � � a and 0 <Ha�F � <1;
where Ha�F � is the Hausdorff measure of F.

Proof. We ®rst prove that

Ha�F � <1: �4�
Since aK ! a as K !1, for any small e > 0, there exists an integer N > 0 such that for any K > N , we have
a > aK ÿ e. HenceX

w�w1w2���wK2L

jFw1w2���wK ja � aK
1

2

� �Ka

< aK
1

2

� �K�aKÿe�
� 1

2

� �ÿKe

6 1

2

� �ÿ�N�1�e
<1:

Hence Ha�F � <1.
Now we want to prove Ha�F � > 0. We denote

R1 � fs � s1s2 � � � : jsj � 1 and s1 � � � sK 2 L for K � 1; 2; . . .g:
For any s � s1s2 � � � 2 R1, we denote sjK � s1s2 � � � sK , and de®ne a probability measure el on R1 by

el��w�� � 1

2

� �jwja
mw; where �w� � fs 2 R1 : sjjwj � wg:

We can seeX
w�r2L;r2R

el��w � r�� �
X

w�r2L;r2R

1

2

� ��jwj�1�a
mw�r � 1

2

� �jwja
mw

X
w�r2L;r2R

1

2

� �a

mr � 1

2

� �jwja
mw � el��w��:

There exists a natural continuous map f from R1 to F. Now we transfer el to a probability measure on F, let
l � el � f ÿ1. We will show that there is some constant M1 > 0 such that if E is a Borel subset of R2 with
jEj < 1=2, then l�E�6M1jEja. Of course, this inequality implies Ha�F �P 1=M1 > 0.
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Set

B1 � fw � w1w2 � � �wK 2 L : jFw1w2���wK j < jEj6 jFw1w2���wKÿ1
j and E \ Fw1w2���wK 6� ;g:

Then

l�E�6
X
w2B1

el��w��6#B1jFw1w2���wK jamw6#B1jEjamw6 2pM jEja � M1jEja: �

Theorem 4.2. If the length of tag jw0jP 3 and for any w 2 L, mw has the form

mw � 2a

3

� �
2a

4

� �i1 2a

3

� �
2a

4

� �i2 2a

3

� �
� � �

or

mw � 2a

4

� �i1 2a

3

� �
2a

4

� �i2 2a

3

� �
2a

4

� �i3

� � � ;

where i1; i2 and i3 are positive integers, then dimH�F � � dimB�F � � a and 0 <Ha�F � <1.

Proof. Since jw0jP 3, we have a > log 12=2 log 2, hence

2a

3

� �
2a

4

� �
> 1:

From the other condition, we know that there exists M1 � maxf�2a=3�; 1g such that mw6M1 for any w 2 L.
Then from Theorem 4.1, we can obtain our result of this theorem. �

Example. w0 � ctg or w0 � ctag, the result dimH�F � � dimB�F � holds.

If we do not have condition �C1�, in the following we still can obtain dimH�F � � dimB�F �.
We de®ne B2 � fu 2 R� j juj � jw0j; u 6� w0g. One can know the set B2 contains N1 � 4jw0j ÿ 1 elements,

hence we can write B2 � fu1; u2; . . . ; uN1
g. Now we can de®ne an N1 � N1 matrix A by

A � �ti;j�i;j6N1
;

where ti;j � �1=2�b if ui � r1x and uj � xr2 with jxj � jw0j ÿ 1; r1; r2 2 R, and ti;j � 0 otherwise, and where b
satis®es U�b� � 1 with U�b� being the largest nonnegative eigenvalue of A. Then from the results of Ref.
[7], we have the following theorem.

Theorem 4.3. If B � fw0g, then

dimH�F � � dimB�F � � b and 0 <Ha�F � <1:

From Theorems 3.1 and 4.1, we have the following result.

Corollary 4.1. If B � fw0g, then

b � dimH�F � � dimB�F � � a:

Remark. When B contains more than one word, we can also construct a matrix A similarly, then from the
results of Ref. [7], we can obtain the same conclusions of Theorem 4.3 and Corollary 4.1 for this case. From
Corollary 4.1, we have two methods to calculate the Hausdor� and Box dimensions of F, i.e., calculate a
and b, respectively.
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