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Abstract

A brief introduction to recent development in applied symbolic dynamics
with a list of references is given.

1 Abstract versus Applied Symbolic Dynamics

For physicists symbolic dynamics is nothing but coarse-grained description of dynam-
ics. The idea dated back to the work of J. Hadamard!l] and M. Morse[?! at the turn
of 20th century.

Abstract formulation of symbolic dynamics goes as follows. Let f: M — M
be a diffeomorphism of a compact manifold M to itself. Since M is compact, one
may choose a finite covering and label this covering by using letters (symbols) from
a finite alphabet A. Then any orbit {f™(z)}2, (for simplicity we take semi-infinite
orbits only) corresponds to a symbolic sequence sys15953 - -+, which is considered as
a point in the space S of all possible symbolic sequences made of letters from the
alphabet A. One iteration of f corresponds to a shift in the sequence. Thus dynamics
on M corresponds to shift automorphism of S. This correspondence has provided a
powerful tool for theorem-proving, say, in ergodic theory. For more information one
may consult [3] and references therein.

However, one cannot get very far in such a general setting. In order to gain more
detailed knowledge on the dynamics, one has to specify M and f, for example, taking
M to be an one-dimensional interval or two-dimensional plane and f to be nonlinear
functions of a certain class. Since dissipation reduces effectively the dimension of the
phase space, this approach works well for dissipative systems. This is what we call
Applied Symbolic Dynamics.

In a sense applied symbolic dynamics originated from the 1973 paper of Metropo-
lis, Stein and Stein¥ on unimodal maps of the interval. Futher development may be
found in [5, 6]. For reviews of recent results see [7, 8, 9].
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2 One-Dimensional versus Two-Dimensional
Symbolic Dynamics

Since recent development of applied symbolic dynamics of one-dimensional maps has
been summarized on another occasion1V in Korea, we confine ourselves to the essence
of symbolic dynamics in two dimensions.

The success of symbolic dynamics of one-dimensional maps is largely based on the
nice ordering property of real numbers, which no longer exists in a plane. Moreover,
since two-dimensional maps are in general invertible, one now deals with bi-infinite
symbolic sequences like

Tt 8n—25n—1 @ SpSn41 77,

where e denotes the present time: s,,s,.1 - - - is called the forward symbolic sequence
and ---s, 25, 1 — the backward symbolic sequence.

One way of overcoming the ordering difficulty consists in decomposition of the
plane into two families of one-dimensional curves, which intersect each other trans-
versely. Then one can order one family of curves along another, still making use of
the ordering property in one dimensional. If one can decompose the plane in such
a way that all points which lead to one and the same forward symbolic sequences
would make one curve in the first family, while all points possessing one and the same
backward symbolic sequences would be located along a curve of the second family,
the core of the problem would be solved.

The above re(iuirement may be met by using so-called dynamical foliations of
the phase plane[1 , 12), Furthermore, some curves from one family of foliations may
touch curves of the other family tangentially, not transversely. However, this is not
a drawback. Experience of one-dimensional symbolic dynamics tells us that now one
has to introduce another symbol with a different “monotonicity”. In other words,
the tangency points of the two family of foliations determine a partition of the phase
plane.

Grassberger and Kantz13] first suggested to determine partition lines by tangen-
cies between the invariant stable and unstable manifolds of fixed or periodic points.
These manifolds are subsets of the dynamical foliations mentioned above. This is
enough to study the dynamics within the attractor. When the partition of the whole
phase plane is needed, one has to generalize the tangencies to that between the two
dynamical foliations 19 20 241 The symbolic dynamics of the Tél map[14], the Lozi

map[15], the Hénon map[16], and some other maps has been studied in detailll -[26],

3 Applications to Ordinary Differential Equiations

An important application of symbolic dynamics of low-dimensional maps consists in
the study of Poincaré sections of ordinary diffential equations. In the 1980s, the
forced Brusselator and the Lorenz model were studied by using symbolic dynamics of



one-dimensional maps[27’ 28], These studies have raised many questions which can
be answered only by invoking symbolic dynamics of two-dimensional maps. We could
return to these questions only when the latter has been well understood. Recently,
our group has made significant progress in the study of the pendulum equations, the
forced Brusselator, the Duffing equations, the extended Bloch model for NMR-laser,
and the Lorenz equations[zg]’[%}. This combined use of numerical work with the
method of symbolic dynamics, which is topological in nature, looks quite promising.
It also calls for a higher degree of automation, which may be accomplished when we
will have accummulated more experience in dealing with various systems, periodically
forced as well as autonomous.
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