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Abstract

Symbolic dynamics is a coarse-grained description of the dynamics. By taking into account
the “geometry” of the dynamics, it can be cast into a powerful tool for practitioners in
nonlinear science. Detailed symbolic dynamics can be developed not only for quadratic,
unimodal maps, but also for maps with multiple critical points and even with discontinuities.
Their application to differential equations will be mentioned briefly.

1 Introduction

Symbolic dynamics is a rigorous way to study complex dynamics with finite precision. As an
abstract chapter in the mathematical theory of dynamical systems[l’ 2], it has a history of more
than half of a century. The basic idea is very simple: divide the phase space into a finite number of
regions and label each region by a letter from a certain alphabet; instead of following a trajectory
one only keeps recording the alternation of letters. One loses a great amount of detailed information
on the dynamics, but some essential, robust, features of the motion may be kept, e.g., periodicity
or chaoticity of an orbit. This is nothing but what physicists call a coarse-grained description.

The idea of symbolic dynamics applies to dynamics in any finite-dimensional phase space. In
many cases, say, for theorem-proving, an arbitrary partition of the phase space would do the job.
However, only for one-dimensional mappings symbolic dynamics has been developed more or less
completely. This is due to the nice ordering property of real numbers on an interval and due to the
possibility of partitioning the “phase space”, i.e., the interval, in accordance with the “geometry”
of the dynamics. In fact, many useful rules and beautiful results have been derived. Recently,
significant progress has been made in symbolic dynamics of two-dimensional maps, but the achieve-
ment is still rather limited compared to what has been known in one dimension. Nevertheless,
the knowledge of symbolic dynamics in one and two dimensions proves to be quite instructive in
understanding the systematics of periodic orbits and chaotic behavior in some higher-dimensional
dissipative systems, e.g., the Lorenz model and some periodically forced nonlinear oscillators. The
presence of dissipation is essential, since it causes the shrinking of phase space volume, which
makes “strange attractors” close to low-dimensional objects at least in some sections.

Chaotic dynamics of dissipative systems provides a rare and lucky case in physics, when one-
dimensional systems are not merely toy models, but lead to essential “universal” results which are
quite useful in understanding higher dimensional systems. In a sense, everyone who enters the
field of chaos should start with the study of one-dimensional maps. We have called the symbolic
dynamics approach to chaos, based on low-dimensional maps, elementary or applied symbolic
dynamics' 3 4 31

Applied symbolic dynamics originated from a seminal paper by Metropolis, Stein and Steinl©1.
The kneading theory of Milnor and Thurston[7], the lecture of Guckenheimer[g], and a paper by
Derrida, Gervois, and Pomeau[g], among others, further developed the theory. What had been
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Figure 1: A quadratic map.

known by the end of 1970s was summarized in the book by Collet and Eckmann[10]. There has
been significant generalization and simplification of the theory and its application to ordinary
differential equations in the 1980s, see, e.g., references in [3, 4, 5].

In these lectures, we will confine ourselves to one-dimensional maps of the general form

Tntl = f(/“) .Z'n), (1)

where f(u,z) is a nonlinear “mapping function” of the variable x and p is a parameter. The
function f(z) maps an interval I into itself; it may have several monotone pieces on the interval
and may contain discontinuity.

In order to have a better feeling as how symbolic dynamics works, we will explain the es-
sentials of symbolic dynamics on four examples, namely, the quadratic map, the gap map, the
antisymmetric cubic map, and the sine-square map. We describe briefly these maps.

1. The quadratic or logistic map

Tny1 = AZp(l —zp), (2)

where A € (0,4] is a parameter and the variable z,, is confined to the interval [0,1]. We denote
the left, monotonically increasing, branch of the mapping function f by a label L, and the right,
monotonically decreasing, branch — by R, see Fig. 1. If necessary, we may write explicitly fr or
fr- Sometimes we use a letter C' to denote the central or critical point of the map, where the
function f reaches a maximum. The letters R, C, and L, are the symbols we are going to play
with in the corresponding symbolic dynamics. They are ordered naturally:

L<C<R. 3)

Since the mapping function f is nonlinear, its inverse is multi-valued. We can define single-
valued pieces of the inverse function by using the labeled branches. In order to simplify the
notation, we use the labels themselves to denote these inverse functions:

L(y) = ;' (v),
R(y) = £ (v). @
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Figure 2: A gap map.

Sometimes it is more convenient to rescale the parameter and variable to write

Tnt1 = — l’i (5)
In this case the inverse functions read
L(y) = +vy — u,
6
R(y)=—Vy—n (©)

We will make use of these functions in the next section.

2. The gap map. By introducing a discontinuity at the central point of the logistic map,
we get the gap map, see Fig. 2. Numerical study has revealed some “strange” behavior of this
map; even a “new route to chaos” has been proposed[ll]. However, all its peculiarities may be
fully understood by way of symbolic dynamics[lz’ 13 1n fact, the gap map happens to be just
the next step of modifying the quadratic map, when the number of monotone branches remains
the same, only the central point C splits into C_ and C. This makes the gap map an instructive
example in studying symbolic dynamics. We note that the letters are ordered as follows:

L<(C_<Cy<R. (7
3. The antisymmetric cubic map
Tpy1 = Azd + (1 - Az, (8)

has three monotone branches R, M, L, and two critical points C' and D, see Fig. 3. These letters
as ordered in a natural way:
L<C<M<DC<KR. (9)

The map (8) is invariant under a discrete transformation x — —z so the orbits may be sym-
metric or asymmetric with respect to this transformation. It provides a convenient example of
analyzing symmetry breaking and symmetry restoration in dynamical systems. As a matter of
fact, this one-dimensional cubic map has a close relation with the Lorenz model of three differential
equations in their systematics of periodic solutions.
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Figure 3: An antisymmetric cubic map.

4. The sine-square map
Ynt+1 = ASin2(yn —B), lyn—B|<m (10)

appeared in a model, describing a hybrid optical bistability device, using liquid crystal as the
nonlinear medium in the cavity. The structure of the parameter plane A ~ B has been studied
several years ago by using symbolic description without constructing the symbolic dynamics[15].
Its symbolic dynamics has been worked out recently[lﬁ].

In this case, four letters, R, N, M, and L, are needed to name the inverse of the four monotone
branches shown in Fig. 4. Formally, there are five critical points: D1, D2, D3, Ci, and C2, but all
C; change simultaneously and so do all D;. The ordering of letters is

Di<L<Ci<M<Dy<N<Cy<R<Ds. (11)
For K4 in Fig. 4, see Eq. (40) in Section 3.

2 Symbolic Sequences and Word-Lifting Technique

We consider the general form (1) of one-dimensional map of an interval I into itself. Starting from
a given initial point xg, we get a numerical sequence or an orbit

20,21 = f(%0), %2 = f(z1) = f*(@0),"+&n = f(@n-1) = f*(®0)," - (12)

where we have dropped the fixed parameter y and introduced a notation for the iterates of f:

@)= f(f"N@), m=1,2,---; fz) =z

To the numerical sequence (12) we juxtapose a symbolic sequence in the following way. If a point
x; falls in a subinterval of I which corresponds to a monotone branch of f, labeled by a letter
0;, i.e., f,;, then we put the letter o; in accordance with z;. If x; falls exactly at one of the
critical points, then o; is a letter denoting the corresponding critical point. In short, we have the
correspondence

Zo, T1, "°°, Tp—1, In,

(13)

00, 01, - On—1, On,
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Figure 4: A sine-square map.

The letter o; may be one of the symbols, which we wrote in (3), (7), (9), or (11).

Sometimes we denote a finite or infinite symbolic sequence by a single capital Greek or Roman
letter, e.g., ¥ or X. We will see that it is a good convention to name a symbolic sequence after
the number that starts the iteration. For example, we may write

To =X =0001" " 0Op_10n""". (14)
Now let us try to reverse the last relation in (12) to get
zo = [ "(@n)- (15)

Of course, this cannot be done so simply, because the inverse map is multi-valued and we do not
know which branch to use when taking the inverse. However, when these branches have been
labeled by the symbol chosen by its argument at each step of the iteration in (12), we may write

Zo = fa_ol(.’ll'l) )
— 0—01 ° o—ﬂl 1(1_”)

To simplify the notation, we will denote a monotone branch of the inverse map by its label, i.e.,
letting

a(y) = f7()- (17)

Examples of such o(y) are L(y) and R(y) in (6).
Consequently, we may write Eq. (16) as a functional composition

Tog =00001 000, 1(Tpn)- (18)

Thus we have a correspondence between a numerical orbit (12), a symbolic sequence (14), and
a sequence of functional composition (18).

A simple application of this correspondence is the word-lifting techm’que[M’ 151 for determin-
ing the loci of superstable periodic orbits in the parameter space. A superstable periodic orbit



contains at least one of the critical points and represented by, for example, a symbolic sequence
(2C)°°, where ¥ is a string of symbols that do not contain any critical points. According to our
convention (14), we may write

C=CxC---, (19)

where the first letter C' on the left is a number, while the first letter C' on the right hand side is a
symbol, corresponding to a f~!. Applying the map f to both sides of (19), we get

f(C)=X%(0), (20)

Now, the C on both sides are numbers, and ¥ must be understood as a composite function. For
a given map, everything is known in Eq. (20) except for the parameter value where the equality
takes place. Therefore, (20) is an equation to determine the parameter of the orbit. When there
is only one parameter, it yields a number; when there are more parameters, it defines a curve or
surface in the parameter space. For example, the period 5 orbit RL2R(C in the quadratic map (5)
lifts into an equation

f(C)=RoLoLoR(C), (21)

in which R(y) and L(y) have to be understood as the inverse functions (6) and the central point
C = 0. It can be solved by transforming into an iteration scheme

Mn-{—l:\/ n+\/ n+\lﬂn_\/ﬂn7

which converges quickly to p = 1.860782522 - - -, starting from any reasonable initial value, say,
Ho = 2.

In the case of maps with multiple critical points a superstable periodic sequence may contain
more than one critical points, e.g., (XCIID)*°, where C and D are critical points and X, II are
strings without critical points. In this case, word-lifting leads to a pair of equations

fD) = %(0),
f(C) = T(D).

(22)

In particular, when there are only two independent parameters, as is the case with the sine-
square map, Egs. (22) determines an isolated point in the parameter plane. It corresponds to a
double-superstable periodic orbit, i.e., it contains two critical points, and is called a joint. Double-
superstable orbits and joints play an essential role in understanding the dynamics, see Section 4
below.

Superstable periodic symbolic sequences are only a particular class of sequences which starts
from a critical point C, or, to be more precise, from the first iterate f(C) of C. If one starts
from a critical point C' and first gets a nonperiodic string p then goes into a periodic repetition of
A%, where the strings p and A do not contain critical points, then the sequence pA* is called an
eventually periodic sequence. Generally, any symbolic sequence, which starts from f(C), is called
a kneading sequence. Kneading sequences play an important role in determining the dynamics.
Periodic and eventually periodic kneading sequences are two best-understood classes of kneading
sequences.

The word-lifting technique applies not only to periodic kneading sequences, but also to even-
tually periodic kneading sequences. It is easy to see that a word pA® may be lifted into a pair of
equations[ls] :

po= Av).

As an example, let us determine the parameter where a four-piece chaotic band merges into a
two-piece one in the quadratic map (5). The kneading sequence is known to be K = RLRR(RL)*,
see, e.g., [4]. Consequently, the equations (23) read

f(C) = RoLoRoR(v),

v = RolL(v). (24)



For the map (5) the inverse functions are given by (6). One has to solve the following pair of

iterated equations:
Hnt1 = \/Hn+\/ n — \/HUn — VHin = Vn, (25)
Un+1 = \/ Pn + Vi — Vn.

Using any reasonable initial conditions, say, uo = 2.0, vo9 = 1.95, a few iterations yield p =
1.4303576 - - -, v = 1.3248379 - - -.

Eventually periodic sequences of type pA®>® determine so-called boarder to chaos. However, we
will not go into details; for more, see, e.g., [4].

3 Ordering of Symbolic Sequences and
The Admissibility Conditions

If a given symbolic sequence, finite or infinite, may be obtained from iterating a map, using
suitably chosen parameter and initial value, it is said to be an admissible sequence for the map.
Clearly, not any arbitrary symbolic sequence is admissible. We have to find the conditions that
an admissible symbolic sequence must satisfy. These admissibility conditions are based on the
ordering of symbolic sequences, so we first define the ordering rule.

Our convention of denoting a symbolic sequence by the number zy which starts the correspond-
ing numerical sequence and understanding a symbol ¢ as the inverse of the monotone branch f,,
see Eq. (17), allows us to explain the ordering of symbolic sequences in a rather simple way.
Suppose we are required to compare two symbolic sequences

.Z‘1=21=E*(7---

and
.732:22:2*7'---,

where ¥* denotes the common leading string of symbols in the two sequences (¥£* may be blank).
The two subsequent symbols ¢ and 7 must be different. We simply assign the order of the two
numbers z; and x2 to the two symbolic sequences: if x; > x5 we say X1 > Yo and vice versa.
In fact, this ordering does not depend on the numbers z; and x5 and may be read off from the
symbols alone.

In order to explain this, we recall a few simple properties of monotone functions:

1. A monotone increasing function preserves the order, i.e., from x; > x, it follows that f(z1) >
f(z2) and vice versa.

2. A monotone decreasing function reverses the order, i.e., from z; > x5 it follows that f(z1) <
f(z2) and vice versa.

3. A composition of many monotone functions acts as a monotone increasing function if there
is an even number of decreasing components, and it acts as a monotone decreasing function
if it contains an odd number of decreasing components. Therefore, we may assign an even
parity (or +1) to a monotone increasing function and an odd parity (or —1) to a decreasing
one. The parity of a functional composition is obtained as the product of the parities of its
components.

4. A monotone function and its inverse are both increasing (or decreasing), so they have the
same parity. For example, in the sine-square map the letters or functions L and N have even
parity, whereas M and R — odd parity.

Since ¢ and 7 are different, they must have been ordered according to the natural order, e.g.,
one of the realtions (3), (7), (9), or (11). Now, looking at the common leading string X* as a



composition of monotone functions, it follows that the order of o and 7 is passed to z; and x5 if
3* has even parity, and the order is reversed if the parity is odd.

Hence the ordering rule: symbolic sequences are ordered according to the first different
symbols after their common leading string ¥*. If ¥* has even parity, the order is preserved, if X*
has odd parity, the order is reversed. An empty string is considered to be even.

We note that this ordering rule works for any one-dimensional map with a finite number of
crtitical points and discontinuities.

Before formulating the admissibility conditions, we introduce the notion of a dynamically in-
variant range. Look at Fig. 1 of the quadratic map, we see that the first and second iterates of
C determine a subinterval [f2(C), f(C)] within the interval I, shown in heavy line and labeled
by U in the figure. All initial points in this subinterval lead to orbits, confined to this subinter-
val. Orbits starting from any initial point outside U will enter it in finite steps, i.e., will show a
trivial transient process. Since in chaotic dynamics we are interested in long-time behavior of the
dynamics, from now on we will concentrate on the dynamically invariant range U and derive the
admissibility conditions for this interval only.

For the antisymmetric cubic map the dynamically invariant range U is shown in Fig. 3. For
other maps, the invariant range may be determined from an inspection of the map.

In order to formulate the admissibility condition for the quadratic map we define two sets
R and L for a given, finite or infinite, symbolic sequence ¥, made of R and L. The set R is a
collection of all substrings of X, which follow any letter R in ¥. The set L is a collection of all
substrings of X, which follow any letter L in X. Take, for example, the sequence

Y= RLLRLRL---,
the two sets are
R(E) = {LLRLRL---,LRL---,L---,---}, (26)
L(¥) = {LRLRL---,RLRL---,RL---,---}.

In order to remember the origin of these subsets we have put ¥ as an argument of R and L. We
often drop the argument when no confusion may occur.

From Fig. 1 of the quadratic map we see that the rightmost point of the dynamically invariant
range U is the first iterate of the maximum of the map, i.e., f(C). According to our convention,
f(C) starts a symbolic sequence which is nothing but the kneading sequence

K=f(C)=R-

If a symbolic sequence Y. is admissible, then any of its subsequences must be admissible. Any of
these subsequences starts from a point other than C. Consequently, its iterates cannot go beyond
the rightmost point of U. Therefore, we have

R(Z) <K,

L) < K. (27)

Equations (27) give the admissibility conditions we are looking for. The equal sign in (27) is a
subtle point. When ¥ does not contain the critical point C, the equal sign may be dropped and
conditions (27) become inequalities.
A kneading sequence K itself must satisfy the admissibility conditions as well, hence
R(K) < K,

L(K) < K. (28)

The two sets R and L(K), taken together, give all shifts of K. A shift operator S is defined by
dropping the first letter in a sequence:
So10903+++ = 0903+ -. (29)
The operator S may be applied repeatedly and we have
{R(K),L(K)} ={S"(K)|n=1,2,3,---}.



Therefore, (28) means that all shifts of K must not exceed K. In other words, a kneading sequence
K of the quadratic map must be a shift-mazimal sequence.

We emphasize the twofold meaning of admissibility conditions. One one hand, Egs. (28) are
the conditions for a symbolic sequence K to be a kneading sequence. It deals with the parameter
space. If necessary, the corresponding parameter may be calculated by word-lifting for a given
map. On the other hand, Eqgs. (27) are conditions for a symbolic sequence ¥ to be admissible when
the kneading sequence K, i.e., the parameter, is given. If ¥ satisfies (27), then there must exist an
initial point zy whose iterations lead to . Here one deals with the phase space. If necessary, the
value of zg may be determined numerically by a bisection method for a given map. This remark
holds for the admissibility conditions of other maps which we are going to study.

The gap map has two kneading sequences

Ky = f(Cy),
K - f(cf). (30)

Given the kneading sequences K., the admissibility conditions for a symbolic sequence Y. read

R(E) S K—‘r:

L) <K . (31)
The conditions for a pair (K, K_) to be kneading sequences consist in:

‘C(K-i-aK—) <K_.

One cannot speak about shift-maximality now.
If we do not impose anti-symmetry on the cubic map, it would have two kneading sequences

Kc = f(0),

see Fig. 3. The admissibility conditions for a symbolic sequence ¥, made of the letters R, M, and

L, are
L(X), M(X) < Ko,

4
Kp < M(D),R(E). (34
By imposing the anti-symmetry requirement (C = D = —(, in particular) and introducing a
symbolic transformation of interchanging R and L but leaving M unchanged:
R & L,
CeC, (35)
M < M,
we are left with only one kneading sequence
K =Kp = f(D), (36)

(The other kneading sequence K = K¢ is obtained by applying the transformation (35) to K.)
The admissibility conditions reduce to:

L(E),M(Z) <K,

K < M(%), R(5). (37)
The admissibility conditions for the kneading sequences become:



Generally speaking, a map with multiple critical points and discontinuities may contain many
parameters, some of which may be abundant. A natural question arises: what is the optimal
number of parameters and how to choose them. It turns out that the best way to parameterize a
map is to use independent kneading sequences as parameters[4]. When there are discontinuities,
one may need additional sequences, which start from the two sides of the discontinuity.

Now it is clear that the sine-square map (10), as it is written, is not well suited for deriving
symbolic dynamics rules. In order to facilitat the construction of symbolic dynamics, we introduce

a new variable
z=(y—B)/n (39)

to rewrite Eq. (10) as
Tpp1 = (Ky — K_)sin?(rz,) + K_, |zn| <1, (40)
where the two new parameters K and K_ are simply related to the old parameters:
K,=(A-B)/nr, K_ =-B/x. (41)
Now, K, and K _ are nothing but the kneading sequences of the map:

K, = f(C1) = f(Cy),
K. = $(D\) = f(Da) = £(Ds). (42)

(We will only consider the case K > K_; the opposite case may be treated by a trivial transfor-
mation.) The admissibility condition for a symbolic sequence ¥ consists in

K_<SMZ)<K,, k=0,1,2,---. (43)

This condition works when the parameters of the map are fixed, i.e., when the kneading sequences
are given. However, kneading sequences themselves are symbolic sequences, so they must satisfy
the admissibility condition as well. This means the sequence K must be shift-maximal:

Sk(K-l-) SK-H k:0,1,2,"', (44)

and K_ be shift-minimal:
K_<SMK.), k=0,1,2,---. (45)

Of course, we might have written these conditions using the four sets R, M, N, and L.

4 Median Words and Kneading Plane

It follows from the admissibility conditions that once the kneading sequences of a map are known

the entire symbolic dynamics is determined. Thus we have to learn how to generate all kneading

sequences for a given map. This task can be accomplished if we know how to generate all the

admissible sequences, included in between two given kneading sequences, up to a certain length.
In the simplest case of the quadratic map the construction is based on the

Periodic Window Theorem9: if a superstable periodic sequence X.C' is admissible, then
the letter C' may be replaced by R or L and the three kneading sequences (XC)*°, (X¥L)*°, and
(XR)®°, are all admissible.

In fact, these three sequences form a periodic window

[(EC)Z,2C, (20)T], (46)
where

(2C)4 = max{ER,SL},

(2C)- = min{TR, SL}. (47)

10
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Figure 5: The kneading plane of the sine-square map.

They are called the upper and lower sequences of X.C, respectively. It is easy to see that for the
quadratic map the upper sequence always has — parity, while the lower sequence — + parity. If we
define a 0 parity for the superstable sequence XC itself, then a periodic window has the following

signature:
(48)

(+a Oa _)'

Let us look at two examples. A superstable fixed point must correspond to the symbolic

sequence C*. It expands into a fixed-point window

(L,C, R). (49)

After period-doubling, it goes into a period 2 window

(RR, RC, RL). (50)

They both have the signature (48).
It is interesting to note that at the far end of the chaotic band, at u = 2 for the quadratic map

(5), the kneading sequence is RL*. The one-band region splits into a two-band chaotic zone at

11
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Figure 6: Bones from a joint (schematic).

K = RL(RR)™. In general, whenever there is a periodic window
()‘7)‘|Cap)7 (51)

where A and p are strings made of R and L, and A|¢ denotes a string, obtained by replacing the
last symbol in A by C, there is a chaotic map with kneading sequence pA®°. This observation
has led to the establishment of so-called generalized composition rule[20], which is a far-reaching
generalization of the x—composition rule, introduced in [9]. The generalized composition rule
opens a new way to derive many more admissible words from known ones and provides a link to
renormalization group equations. We will not touch on this development in these lectures.

The periodic window theorem allows us to find easily the shortest admissible sequence between
two given admissible sequences ¥C' < IIC. We compare the upper sequence (XC)$° of the smaller
sequence X.C with the lower sequence (IIC)* of the larger IIC. If they are identical, then they
are adjacent words and there are no median word in between. In fact, II is the period-doubled
regime of X C. We note that only an upper sequence, whose parity is always —, is capable to
undergo period-doubling. If these two sequences are not the same, then their common leading
string appended with a C' is the median sequence we are looking for. This method of construction
of median words deals only with admissible sequences at its intermediate steps and is easier to
be generalized to maps with multiple critical points. The old method of MSS[6], using so-called
harmonic and antiharmonic sequences, has become obsoletel19].

How to generalize the notion of upper and lower sequences to maps with multiple critical
points? It goes straightforward, using the ordering rule and continuity consideration. Take, for
example, a kneading sequence K, of the sine-square map (40). It starts with a C;, i = 1,2
and we check the subsequent letters. When another C; is encountered, K, must be a periodic
sequence. The periodic window theorem still works and we have the upper and lower sequences:

(X2C1)4 =max{XL,XM},
(2C1)_ = min{SL, SM}, 5
(2C3)+ = max{XN, XR}, (52)
(2C3)— = min{EN,XR}.

As in the case of the quadratic map, the upper sequences are always of — parity.

12
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Figure 7: The kneading plane of the gap map. Periods up to 6 are shown.

What happens when
K+ = HDJ. ce

contains one of the critical points D;, j = 1,2,37 Since the letter after D; must be a symbol
corresponding to f(D;), it follows from (42) that the kneading sequence is

K, =TD;K_. (53)

If K_ ends with a C;, then this defines a double superstable periodic sequence, i.e., a “joint” which
we have mentioned in section 2.

However, in order to write down the upper and lower sequences of K it is not enough to
replace D; by its neighboring letters. For instance, look at the case of IID,. The two neighbors of
D5 are M and N, but IIM and IIN are not the closest sequences to IIDs, as it is possible to insert
other sequences in between. Since for the sine-square map the largest sequence is RL* and the
smallest — L, the smallest sequence, which is larger than T1D,, is (IID3) L. Similarly, the
largest sequence, which is smaller than I1D,, is (IID2)_ L*. We list these sequences in descending

13



order:
(IIDy)+ K

(ILD5) . L
D, K_
(TID,)_L*®

(Dy) K

Therefore, we have found the upper and lower sequences of I1D5:

M e (54)

where, as usual,
(IID3) 4+ = max{IIM,IIN},
(IID2) - = min{IIM,IIN}.
Now, the lower sequence always has a — parity.
Since the letter D3 has only a smaller neighbor R, a kneading sequence K+ = II.D3 has a lower

sequence
(ILDs)— = IIRL®,

only when IIR has — parity.
Analogous discussion may be carried out for K_. We list only the results:

1. The upper and lower sequences of K_ = XD, are (¥D3)%° and (XD;)%, respectively, with
the usual definition for (...)t.

2. The lower sequence of Y.Dj, if exists, is (X R)>.

3. The sequences, closest to K_ = IIC; K4, are (in descending order)

(IIC;) 4+ RL™
(IIC;)+ D3
TC; K,
(IIC;)-Ds
(IIC;)_ RL*

Knowing how to construct all upper and lower sequences of the superstable sequences, we can
generate all the kneading sequences K and K_ up to a given length. Take K for example. From
the ordering rule it follows that among all K the maximal one is Ky = D3 and the minimal one
— K = L*°. Using the lower sequence of D3, i.e., R*, and inserting all possible critical points
in the first column according to the natural order (11), we have (in descending order):

D3
R* = RRR---

C2
D,
¢
L = LIL.
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Figure 8: The kneading plane of a general cubic map. Joints and bones up to period 5 are shown.

Now, putting in the upper and lower sequences of Cs, Dy, and (', and inserting critical points in
the second column according to the natural order (11), we get all superstable kneading sequences
up to period 2, and so on, and so forth.

In this way we can get all K; and K_ up to a certain period. Without checking their com-
patibility, these K, and K_ give the axes which span the kneading plane. In order to continue
these kneading sequences into the plane, we have to check whether a pair (K, K_) satisfies the
condition (43) or not. All kneading sequences up to period 3 are shown in Fig. 5. Solid circles in
the figure are joints; the corresponding double superstable sequences are labeled explicitly.

Which bones grow from a joint may be determined from continuity consideration, i.e., by
changing one of the critical points into its upper and lower sequences. This is shown in Fig. 6,
where a general joint [YD,X(C] is drawn. The dash line vanishes for (Y D3), since no upper
sequence (Y D3)4 exists. For Y Dy the dash line should be understood as a solid one.

Not going into further details of this type of construction, we show the kneading planes of a
few maps.

Fig. 7 shows the kneading plane of the gap map up to period 6. All the unusual behavior
observed in [11] may be understood by inspecting this figure.

The kneading plane of a general cubic map is shown in Fig. 8. (It first appeared in [17] as
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Figure 9: Kneading plane of a (—, +, —) type cubic map. For the thick arrow see text.

Fig. 8 without explicitly labeling the bones. A pair of missing bones has been added.) Bones up to
period 5 are drawn and joints are shown as solid circles. In a sense, a kneading plane tells almost
everything about the global structure of the parameter space. It applies to all maps of the same
topological type. In order to draw it, there is no need to know explicitly the mapping function.
All we need is the ordering rule and admissiblity conditions. To transform a kneading plane to
the parameter plane of a given map, it is enough to invoke the word-lifting technique, which in
the case of two independent kneading sequences yields the location of all bones and joints.
Figure 8 corresponds to a cubic map with two increasing and one decreasing branches, so-called
map of (+,—,+) type. One can as well consider a cubic map of (—,+,—) type. The ordering
rule and admissibility conditions lead to the kneading plane, shown in Fig. 9. It first appeared in
[17] as Fig. 12 without explicitly labeling the bones. We use this figure to comment on modeling
antimonotonicity, i.e., reversal of period-doubling cascades in nonlinear systems, by cubic rnaps[2 1.
While in higher dimensional systems antimonotonicity is an inevitable and essential phenomenon,
in one-dimensional maps with multiple critical points, it depends on how a parameter is varied in
the parameter space. In Fig. 9 a thick arrow is superimposed on the kneading plane, which shows
the range of parameter, used in one of the bifurcation diagrams in [21] to show the appearance
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of antimonotonicity. We note that there are infinitely many ways to exhibit as well as to avoid
antimonotonicity. When antomonotonicity arises, we can read off the name of periodic orbits
invloved from the kneading plane.

5 Symmetry Breaking and Symmetry Restoration

Symmetry breaking and symmetry restoration are common phenomena in physical systems with a
certain kind of symmetry. An equation or a thermodynamical potential may possess a higher sym-
metry, but a particular solution or an equilibrium state may exhibit only a lower symmetry. All
these asymmetric solutions (or states), taken together, restore the original symmetry. It is inter-
esting to note that a simple form of symmetry breaking and restoration appears in the bifurcation
structure of many dynamical systems. In particular, the existence of symmetric orbits, which first
undergo a symmetry-breaking bifurcation into asymmetric orbits, and then enjoy period-doubling,
has been observed in many ordinary and partial differential equations as well as in laboratory ex-
periments. The fact that symmetry breaking always precedes period-doubling has been called
“precursor” 22) ¢4 period-doubling or “suppression” (23] of period-doubling. Moreover, it is easy
to see that orbits of even periods are capable of symmetry breaking, but not all even periods can
do so. All this can be explained by symbolic dynamics on the example of the antisymmetric cubic
map (8)[24].

The bifurcation diagram of the antisymmetric cubic map is shown in Fig. 10, where the sym-
metry breaking of a period 2 orbit is most clearly seen. The asymmetric period 2 orbit develops
a period-doubling cascade with its own reversed period-halving sequence of chaotic bands. In the
chaotic regime the symmetry suddenly restores.

The two kneading sequences K and K are related by the symmetry transformation (35), so it
is enough to look at one of them, say, K. If a periodic K contains only one critical point C":

K =3C, (55)

then it must correspond to an asymmetric orbit for the simple reason that it does not contain the
letter C. Applying the transformation (35) to K, we get

K =3%C. (56)

This is the other asymmetric orbit, located symmetrically to (55).
A superstable symmetric kneading sequence must contain both C and C:

K = 5C5C. (57)

First, this is an orbit of even period; only those even periods which can be decomposed like (57)
can undergo symmetry breaking. Second, it is invariant under the transformation (35), since it
can be brought back by cyclic permutation.

Take, for example, the simplest case when ¥ is blank. We have a doubly superstable orbit CC.
We can shift C' a little into one of its neighbors, R or M. To keep the symmetry, we must change
C into L or M, respectively. Similar to the periodic window theorem, now we have a window of

symmetric period 2 orbit .
(MM,CC,RL). (58)

Applying the transformation (35) to (58), we get
(MM,CC,LR),

which goes back to (58) under cyclic permutation. Therefore, it is indeed a symmetric orbit.
However, the signature of this window is (note that in the cubic map only the letter M has —
parity)

(+7 07 +)7
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Figure 10: Bifurcation diagram of the antisymmetric cubic map.

which can never undergo a period-doubling bifurcation. A symmetry breaking takes place when
an “inverse point”

Tt = _f(,ua .Z'*), (59)

which is analogous to a fixed point z* = f(u,z*), loses stability. Symbolic dynamics only deals
with monotonicity and continuity of the mapping function, it does not know where a symmetry
breaking really happens. Consequently, the symbolic sequence RL in the symmetric window (58)
continues to the other side of the symmetry breaking point, giving birth to

(MM,CC,RL) (RL,RC,RM). (60)

We have used continuity argument again, so the letter L goes first into C, then into M. Applying
now the symmetry transformation (35) to (60), we get

(MM,CC,LR) (LR,LC,LM). (61)

The second triple (LR, LC, LM) cannot be brought back to (RL, RC, RM) by cyclic permutation.
They correspond to the asymmetric period 2 orbits, which exist in its own basin. The asymmetric
window has a signature

(+5 0; _)J

therefore, it is capable to undergo further period-doubling. Take RL and RM as A and p in
(51), the corresponding chaotic map is given by pA*® = RM(RL)*°. The precise parameter may
be calculated by using the word-lifting technique. It is nothing but the point where symmetry
restoration takes place. The mechanism of symmetry restoration consists in the collision of the
asymmetric chaotic attractor with the unstable symmetric orbit and the attractor accquires the
symmetry of the latter.

6 Two-Dimensional Maps and Differential Equations

In order to cut a long story short we will only mention a few new developments of symbolic
dynamics in higher dimensions by giving some references.
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In two- and higher-dimensional systems the nice ordering property of real numbers and the sim-
ple partition of an interval, which have played crucial role in symbolic dynamics of one-dimensional
maps, no longer exist. The partition for the Hrion map[25], using tangencies of the invariant
manifolds, was first discussed by Grassberger and Kantz[26l. Then Cvitanovié, Gunaratne, and
Procaccial2?l discussed its symbolic dynamics. Later the role of forward and backward foliations
of the map in determining the partition lines has been recognized by Zheng and collaborators.
The simplest case turns out to be the two-dimensional version of the sawtooth map, introduced
by TE281, 1ts symbolic dynamics was constructed in [29]. The piecewise linear counterpart of the
Hénon map, so-called Lozi map[go], may be treated in a similar way[31]. The two piecewise linear
maps helped to reach a deeper understanding of the symbolic dynamics of the Hénon map[32’ 33,

Some years ago we have applied symbolic dynamics of one-dimensional maps to the systematics
of periodic orbits in differential equations. In particular, the ordering of periodic orbits of the
periodically forced Brusselator has been compared to that of the quadratic map, using symbolic
dynamics of two letters. See Chapter 5 of [3] for details and references. The systematics of
periodic orbits in the autonomous Lorenz model has been juxtaposed with the ordering of kneading
sequences in the antisymmetric cubic map (8), i.e., symbolic dynamics of three letters!34 351,
Our main argument for so doing lies in the shrinking of phase space volume due to dissipation.
However, the Poincaré maps of both systems are essentially two-dimensional and there is no a priori
reason that the two-dimensional nature will not show off. Having reached a better understanding
of symbolic dynamics of two-dimensional maps, we have undertaken the job of justifying the
previous one-dimensional approach and revealing the cases where a two-dimensional study leads
to essentially new insight. Our first results seem to be promising and will be published elsewhere.
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