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Abstract—In this paper we show that numerical study under the guidance of symbolic dynamics may
provide an effective method to gain global knowledge on ODEs, which is difficult to obtain either by
purely analytical or by completely numerical means. We demonstrate how this approach works in
practice on the example of the periodically forced Brusselator. In particular, the transition from
annular type dynamics to interval dynamics is explored in terms of symbolic dynamics. Our results
are instructive for the study of other nonlinear systems with competing frequencies, as the method is
topological in nature, but complemented with numerical details. Copyright © 1996 Elsevier Science
Ltd.

1. INTRODUCTION

Many nonlinear systems are described well by ordinary differential equations (ODEs).
When a practitioner in physical science or engineering encounters a set of such equations,
it is important to have a global understanding of its bifurcation and chaos ‘spectrum’: the
systematics of periodic orbits, stable as well as unstable ones, at fixed and varying
parameters, the type of chaotic attractors which usually occur as limits of sequences of
periodic regimes, etc. This is not a simple job to accomplish either by analytical means or
by purely numerical study. Recollect the problem of counting the number of limit cycles in
planar systems of ODEs. Despite the great effort of mathematicians, it has not been
completely solved yet. As chaotic behaviour may appear only in systems of more than
three autonomous ODEs or non-autonomous systems with more than two variables, it
naturally leads to problems that are much more difficult than counting the number of limit
cycles.

Some years ago we suggested associating the systematics of numerically found periodic
orbits in ODEs with symbolic dynamics of one-dimensional maps [1]. This was based on
the observation that chaotic attractors in many dissipative systems with one positive
Lyapunov exponent usually have one-dimension-like structure in some sections. Two
systems of ODEs have been studied in detail.

The first system is the periodically forced Brusselator. In fairly large regions of the
parameter space the stable periodic orbits may be named and ordered by using a symbolic
description of two letters, similar to the symbolic dynamics of the logistic map (for a review
see Chap. 5 of [2]). Although there are regions of frequency-locked regimes and transitions
from quasiperiodicity to chaos, as to be expected in a driven system, these have not been
compared with symbolic dynamics of circle or annular maps.

The second system is the Lorenz model, whose periodic orbits may be systematized by
comparing with an antisymmetric cubic map, using a symbolic dynamics of three letters [3].
This study was later extended by invoking symbolic dynamics of two-dimensional maps and
antisymmetric map with a discontinuity [4].
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While this approach has had some success, many more questions have been raised. We
list a few.

1. The number of periodic orbits found in ODE:s is usually less than that allowed by the
admissibility conditions of the corresponding one-dimensional symbolic dynamics.
Within the one-dimensional framework it is hard to tell whether this was caused by
insufficient numerical search or by some forbidden rule.

2. In the Poincaré sections of ODEs the attractors often show two-dimensional structures
such as layers, bendings, and hooks. On one hand, one has to explain the success of 1D
symbolic description, which sometimes even turns out to be better than expected. On
the other hand, the limitation of the 1D approach has also to be elucidated, as the
Poincaré maps are necessarily two-dimensional.

3. Early effort was more or less concentrated on stable orbits, while unstable orbits play a
fundamental role in organizing chaotic motion. It is necessary to develop symbolic
dynamics which is capable of treating stable and unstable periodic orbits to some extent
alike. Moreover, it is desirable to indicate the structure of some, if not all, chaotic orbits
at given parameter set.

Since in the Poincaré sections of ODEs one actually deals with two-dimensional mappings,
a significant progress of symbolic dynamics of two-dimensional mappings is required in
order to solve the above problems.

The success of symbolic dynamics of one-dimensional maps is largely based on the neat
ordering property of real numbers, which is lacking in higher dimensions. This has
hindered the development of symbolic dynamics of two-dimensional maps. An essential
step forward was the suggestion of Grassberger and Kantz [5] to determine the partition
line of the phase plane by connecting ‘primary’ homoclinic tangencies. Zheng [6] further
extended the construction by locating tangencies between the forward contracting foliations
and backward contracting foliations, which contains the tangencies between invariant
manifolds as subsets. This extension is necessary when knowledge of the partition line in
the whole phase plane, not only restricted to the attractor, is required. This happens, for
example, when assigning symbolic names to periodic orbits which lie outside the attractor
or when treating transient processes. Operationally, this extension also facilitates the
determination of partition lines, as the requirement to keep the invariant manifolds
disappears.

For one-dimensional mappings, symbolic dynamics has been constructed both in the
phase space, e.g. for the ordering of all unstable periodic orbits, and in the parameter
space, e.g. by constructing the kneading plane. However, most symbolic dynamics studies
on two-dimensional mappings and ODEs have so far been carried out in phase space at
fixed parameter values. As in different regions of the parameter space different dynamical
regimes may exist, it is of interest to study the transition from one type of symbolic
dynamics to another, e.g. from unimodal or Hénon type to circle or annular type. The
forced Brusselator turns out to be a good illustration of a general approach, which may
also be applied to other planar forced systems.

After introducing the forced Brusselator in Section 2, we develop symbolic dynamics for
the dissipative standard map, the two-dimensional counterpart of the circle map in Section
3. This will also help us to fix the terminology of symbolic dynamics of two-dimensional
maps. Section 4 studies the forced Brusselator from the viewpoint of the dissipative
standard map. Section 5 is devoted to the transition from circle-map type to unimodal-map
type behaviour in the Poincaré sections. The process of how symbolic dynamics of three
letters reduces to that of two letters is elucidated. Section 6 constructs symbolic dynamics
when unimodal or Hénon map captures the essential dynamics on the attractor. Finally, in
Section 7, we discuss the general implication of our approach.
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2. THE PERIODICALLY FORCED BRUSSELATOR

The term Brusselator was coined by Tyson [7] in 1973 to denote a set of two ODEs,
which describe a model of tri-molecular chemical kinetics. The periodically forced
Brusselator, first studied by Tomita and Kai [8, 9], is obtained by adding a periodic force
to the Brusselator: i

i=A—-(B+ 1x + x’y + acos(wt), ()
y = Bx — x%y,

where x and y are concentrations of intermediate products, A and B are concentrations of
some chemicals under control, o and w are the forcing amplitude and frequency.

The periodically forced Brusselator (1) is one of the most-studied systems of ODEs.
Tomita and Kai [8, 9] discovered a small chaotic region and many periodic ‘bubbles’ in the
« ~ @ parameter plane. Hao and Zhang, using a subharmonic stroboscopic sampling
method [10], explored in great detail the hierarchical structure of chaotic bands and
periodic orbits embedded in these bands [11]. This led to the discovery of the first
‘universal’ ordering of kneading sequences in a system of ODEs [12], so-called U-sequence
by Metropolis et al. [13] in their study of periodic sequences in unimodal maps. Other
findings include intermittent transitions to chaos [14] and transition from quasiperiodic
regime to chaos [15].

Figure 1, taken from Ref. [12], shows an A-w section of the parameter space for fixed
B =1.2 and a =0.05. The solid lines denote boundaries between periodic regimes, and
ticked-solid lines are boundaries to period-doubling cascades. The numbers in the figure
indicate the periods and Q is the quasiperiodic regime. The dotted regions in Fig. 1 are
chaotic with many embedded periodic strips, of which only a few are indicated in the
figure. In fact, a method was devised to assign symbolic names to all stable periods, which
were found numerically. These words happen to be ordered just as that in the unimodal
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Fig. 1. An A-w section in the parameter space with fixed B = 1.2 and a = 0.05; for details see text.
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map. It was along a slanting straight line, say A =0.46 — 0.2w in this plane, where the
above U-sequence of MSS [13] was discovered. All but one stable periodic orbits up to
period 6, corresponding to those in the unimodal map, exist and are ordered in the same
way as in the U-sequence. A large amount of direct numerical search for the only missing
period 6 RL’RC has been in vain. In Section 6 we will show how the absence of this and
many other words follows from the admissibility condition of the corresponding two-dimen-
sional symbolic dynamics.

If we cut Fig. 1 along the straight line A =0.48 — 0.2w and take a perpendicular plane,
we get an o — w section, which is shown in Fig. 2. This is the section where the transition
from quasiperiodicity to chaos was first studied in the forced Brusselator [15] and the figure
is reproduced from Ref. [2]. In Fig. 2, solid lines denote the boundaries between periodic
regimes, and dashed lines are boundaries between periodic and quasiperiodic regions. The
numbers indicate periods, Q is the quasiperiodicity and dotted regions are chaotic. We will
show that the behaviour of the forced Brusselator in the lower part of this parameter plane
is described first by symbolic dynamics of a 1D circle map, then by a 2D symbolic
dynamics, similar to that of the dissipative standard map. With increasing « the symbolic
dynamics changes first to that of the 2D Hénon map, then to the 1D unimodal map.

3. SYMBOLIC DYNAMICS OF THE DISSIPATIVE STANDARD MAP

Assuming that the symbolic dynamics of 1D circle map is well-known (see, e.g. [16]), we
describe its two-dimensional extension, i.e. the dissipative standard map (see also [17]),
defined by

Fni1 = a + br, + Ksin2m8,,
+1 (2)

0n+1 = Gn + L (mOd 1)

The following discussion applies as long as the qualitative behaviour of the first return
maps of @ remain the same (see Fig. 5 below), i.e. when the nonlinearity K is kept within
a certain range. However, in order to draw the figures, we shall fix the parameters at
a=04,b=0.2, and K = 0.334225.

The Jacobian of the map is

J, = (1 + 27K cos 276, b) 3)

2n K cos 278, b/

BB
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Fig. 2. An a-w section in the parameter space with A =0.48 — 0.2w and B = 1.2.
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Consider a point (8,, r,), which has been reached from (8,_;, ,_,) by iterating (2) j times.
The eigenvector corresponding to the larger eigenvalue of the matrix (superscript b is
backward)

Ml:, = n—lJn—Z . Jn_,-:i,,_,'jn—;‘—l ... '711—1 (4)

converges for increasing j, see e.g. [18, 19]. In (4) J denotes the transverse of J. In the
j— » limit the eigenvector defines the urnstable direction at the point (8,, r,). Integral
curves of the field of such directions determine the backward contracting foliation (BCF) or
simply the backward foliation of the phase plane. The BCFs are not invariant manifolds in
general. However, if a foliation goes through an unstable fixed point or periodic point,
then the unstable manifold is a submanifold of BCF. All the points on one and the same
backward foliation converge to each other when iterated backward. Therefore, it makes
sense to introduce an equivalence relation =:

pr=py if lm[T™(p) - T"(p)| =0, ©)

where p;, = (6;, r;), and T denotes the map (2).
Similarly, the stable direction at (8,, r,) can be found as the k— o limit of the
eigenvector, corresponding to the smaller eigenvalue of the matrix (superscript f is

forward)

My =T 0 T eidneies - ()
The integral curves of such directions determine the forward contracting foliations (FCF)
or simply the forward foliation of the phase plane. The FCFs are not invariant manifolds
either. If a foliation goes through an unstable fixed point or periodic point, then the stable
manifold is a submanifold of FCF. All the points on one and the same forward foliation
converge to each other when iterated forward. The equivalence relation is defined as

P11 =P if ’lll_Ig iT"(Pl) - T"(Pz)‘ = 0. (7

According to the procedure proposed in Ref. [5] the partition line can be determined
from primary tangencies of stable and unstable manifolds of the unstable fixed point. It is
natural to extend this procedure to the tangencies between the two classes of foliations [6],
thus extending the partition lines into the phase plane beyond the attractor.

In Fig. 3 we show the attractor and two primary partition lines (S and ©G) on the
background of the forward foliations (dash curves). The line marked with D is the
preimage of ®S. The notations S, G, and D represent Smallest, Greatest, and Discon-
tinuity, as it will be seen in the corresponding first return map (Fig. 5). The areas in
between these lines are labelled by ®R, ®L, and eN.

Since the dynamics takes place on an annulus, we may cut the annulus along the line ®S.
By dropping (mod 1) in (2) we get the lifted (6, r) plane. In the lifted plane one may take
the strip, whose border is the line ®S and the line obtained by shifting @S to the right by
one unit, to be the fundamental strip. Thus, the area to the left of the @S line in Fig. 3,
also marked with ®N, belongs to the left neighbour of the fundamental strip. In order to
avoid any misunderstanding we note that the partition lines ®S and ®G are not parallel to
the r-axis, as they may seem to be.

Any orbit in the phase plane is coded as a bi-infinite symbolic sequence

. S—ZS—I‘SOSISZ .« vy (8)
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0.8
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-0.5 0 v 0.5

Fig. 3. Two primary partition lines ®S and ®G of the dissipative standard map. The fundamental strip of the
unwrapped annulus is the area between the line @S and its parallel shift to the right by one unit.

where s; is L, R or N, depending on which area the i-th point of the orbit falls in, and the
® indicates the ‘present’ point. The sequence

.SQSISZ e

is called the forward symbolic sequence with respect to the present dot (®), and the
sequence

R S~2s_1.

is the backward symbolic sequence.

Another way to partition the phase space is based on preimages, as shown in Fig. 4.
Under the inverse map the area marked with Le in the figure will map to the area ®L of
Fig. 3, while the areas marked with R® and N® map to areas ®R and N in the left strip
next to the original one.

We may introduce an ordering in the fundamental strip. According to Fig. 3 we may
take

oS < oL < ®R < oG < eN, ©
and from Fig. 4 it is convenient to have
Re < Ge < Ne < Se < Le. (10)

The return map 6,,, — 6,, constructed from Fig. 3, is shown in Fig. 5. This map clearly
shows two-dimensional features, since it is multi-valued near the discontinuity as well as
near the maximum and minimum. However, this does not prevent us from treating it as a
one-dimensional map for the following reason. In Fig. 3 all points on one and the same
forward foliation (dashed line) have the same future, and, after appropriate coarse-
graining, share the same forward symbolic sequence, see eqn (5). Therefore, if we are only
interested in forward symbolic sequences, we can shrink different pieces of the attractor
along one and the same forward foliation to make it a one-dimensional object.
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-0.5 0 6 0.5

Fig. 4. The partition of the annulus according to pre-images.

0.5

0n+1

-0.5
-0.5 0 0, 0.5

Fig. 5. The 6, — 6, first return map.

Reflected in the return map Fig. S, this means one can neglect the layered structure.
Thus in the ®N area, variable 6, as a function of 8, is decreasing, while in other areas it
is increasing. In other words, only the letter N has an odd parity. We may then extend the
ordering rule for symbolic sequences of the circle map to that for the forward sequences of
map (2) as

oFL ... <eER ... < eEN ...,
oOL ... >e0OR ... > eON .. .,

(11)
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where E (resp. O) is a finite string consisting of the letters L, R and N, and containing an
Even (resp. Odd) number of the letter N.

Similarly, all points on one and the same backward foliation (not shown in Fig. 3 except
for the attractor, which is part of the backward foliations) have the same past, and, after
appropriate coarse-graining, share the same backward symbolic sequence, see eqn (7).
Therefore, based on the ordering (10), backward symbolic sequences are ordered as

...REe <. . NEe < ...LEe,
... RO® > ... NOe > .. LOe,

(12)

where E and O have the same meaning as in (11).

We can summarize the ordering of symbolic sequences in two-dimensional maps such as
(2) as follows. A family of forward foliations are ordered according to their transverse
intersections with a backward foliation; a family of backward foliations are ordered
according to their transverse intersections with a forward foliation. The order is well-
defined as long as there are no tangencies between the two foliations. The occurrence of
tangencies is associated with foldings of one family of foliations and with the necessity of
introducing a partition line through the tangencies. The ordering reverses on crossing the
partition line. In practice, the ordering may be inferred from the local order near a fixed
point, i.e. from the signs of the eigenvalues.

As long as foliations are well-ordered, a tangency on a partition puts a restriction on
allowed symbolic sequences. For example, when the backward foliations QR® and QNe
are tangent to the forward foliation ®P on the partition line Ge, forming a tangency
QGeP, any forward sequence that is greater than ®P (geometrically located to the right of
the foliation ®P) cannot intersect with backward foliations in between QR® and QNe, i.e.
with those which are smaller than QNe and greater than QRe. Thus sequences of the type
Q.,RP, or Q,NP, are forbidden by the tangency QG®P, where Q,® > Q® and eP, > P,
Similarly, sequences of the type U_NV_ or U_LV_ are forbidden by a tangency USeV on
the partition line S®, where U_ @ <U ® and eV_ < eV.

What has been said is best represented in a symbolic plane [20]. In order to construct the
symbolic plane we introduce a metric representation of symbolic sequences, which
embodies the ordering rules (11) and (12). We first define an integer €; for every sym-
bol s;:

]_1 ifSiZN,

&= 11 otherwise. (13)

We then assign to each forward sequence ®s;s, ... s; ... a real number « € [0, 1]:
& = Z.ula_ir (14)

i=1
where w; € {0, 1, 2} is defined by
_ 1 if s, = R,

= {elez ... €_; — €| otherwise. (13)

It is easy to see that all forward sequences are ordered according to their a values.

Similarly, we define another integer o; for each symbol s;:
-1 lf N L,

% = ][1 otherwise. (16)

and assign to each backward sequence ...s_; ... s_,s_;® areal number § ¢ [0, 1]:
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B=>v3", (17)
i=1
where
— Jl if S," = N,
Y= 1|€—1E—z s €4 — O otherwise. (18)

All backward symbolic sequences are ordered according to their 8 values.

The unit square a € [0, 1] X S € [0, 1] forms the symbolic plane. Horizontal and vertical
lines in the symbolic plane correspond to backward and forward foliations, identified by
their symbolic sequences, respectively. A point in the unit square represents a bi-infinite
symbolic sequence with a given present dot. It can be verified, for example, that in the
metric representation we have

a(eNL") = f(L"®) =1, a(oL") = f(R*®)=0,
®(®NNL*)= a(®RNL")=2/3, B(R*Le) = B(R"Ne)=2/3, (19)
®(®RL”) = a(#LNL*)=1/3, B(L*Ne) = f(L*Re)=1/3.

The two tangencies QG®P and USeV, discussed above, demarcate two ‘forbidden zones’
in the symbolic plane. Along a partition line an infinite number of tangencies may be found
in principle. However, when one is interested in sequences not exceeding a fixed length, a
finite number of tangencies is enough. Such a case is shown in Fig. 6, where 20 tangencies
are used to outline the forbidden zones. In the figure, 60000 points representing real orbits
are also drawn. All of them are located outside the forbidden zones. Although the image
of a forbidden zone is also forbidden, it suffices to consider forbidden zones, formed by
primary tangencies. The union of all forbidden zones, determined from one and the same
partition line, is called a fundamental forbidden zone (FFZ). The boundary of a FFZ is
also called a ‘pruning front’ [20] in the symbolic plane. Therefore, we may say that the

1
; ;;;: * Se WS

F
BIF

A

— e FFZ
0

0 o )

Fig. 6. Symbolic plane of the dissipative standard map. Together with the FFZ, 60000 points of real orbits are also
shown. None of them falls inside the FFZ.
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partition lines S® and Ge in the phase plane transform into the ‘pruning front’ in the
symbolic plane.

In Fig. 6 the area enclosed by the pruning front of Se and the line o = 0 and the area
enclosed by the pruning front of Ge and the line @ =1 form the fundamental forbidden
zones (FFZ). Any point within the FFZ corresponds to a forbidden sequence.

Furthermore, from the construction of the FFZ we see that for the tangency QSeP on
the line Se, the square enclosed by f=1, = B(QLe®), « =1 and o = «(®P) does not
overlap with the FFZ, thus forming an allowed zone.

If a symbolic sequence has no shifts falling in the FFZ, it is admissible [20]. Therefore, in
order to formulate the admissibility conditions for all symbolic sequences an infinite
number of tangencies are needed. As long as the role of a single tangency is concerned, it
determines a forbidden zone and an allowed zone in the symbolic plane. One can only say
that

1. Even if just one shift of a sequence falls in the forbidden zone, the sequence is
forbidden.
2. If a sequence has all its shifts in the allowed zone of the given tangency, it is admissible.

In Fig. 7 we sketch the allowed and forbidden zones, formed by four tangencies. A
tangency may be compared with a kneading sequence in one-dimensional maps. While a
one-dimensional map with a finite number of critical points only possesses a finite number
of kneading sequences, a two-dimensional map has infinite many tangencies. However,
when we are interested in symbolic orbits not exceeding a finite length, a finite number of
tangencies suffice for the job.

We shall rely on the symbolic dynamics of the dissipative standard map to understand
the driven Brusselator in the next section. For later comparison of the dissipative standard
map with the Poincaré map of the Brusselator it is convenient to map the 6—r phase plane
into the x—y plane by making a transformation

Fig. 7. A sketch of forbidden and allowed zones when two tangencies are used both on Se and Ge for the
construction.
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(8, r) > (x, y) = (xg — rcos2mB, yo — rsin2nf).
Take x, = y, = 1, the r — 0 plane in Fig. 3 becomes the x — y plane in Fig. 8.

4. THE BRUSSELATOR VIEWED FROM THE STANDARD MAP

The lower part of Fig. 2 looks very much like the parameter plane of a typical circle
map. Indeed, quasiperiodic motion and the transition from quasiperiodicity to chaos has
been discovered in this region [15]. In order to construct symbolic dynamics we first draw
the attractor in the Poincaré section and determine the partition lines. If the attractor
does not show much two-dimensional feature, reduction to symbolic dynamics of one-
dimensional circle map may capture much of the essentials. We start from this simple case.

Figure 9 shows the chaotic attractor at w=0.775, «=0.0124, B=12 and A =
0.48 — 0.2w = 0.325. In order to obtain the stroboscopic portrait an initial phase t, =
0.77/w is taken. The attractor resembles that of a one-dimensional circle map except for a
segment where two sheets are just perceptible. From the tangencies between forward and
backward foliations two primary partition lines ®G and @S are determined.

Taking the point (x,, y,) = (0.275, 3.64) inside the circle as a reference point (which is
indicated by a cross in Fig. 9), we define an angle

6= L tan1 2Ty fos
2T X - X
for any point (x, y) on the attractor. The phase offset ¢, = 0.225826 is chosen in such a
way as to put ®S at 8 =~0. A first return map from 6, to 6,,,, calculated from Fig. 9, is
shown in Fig. 10. The three monotone segments in Fig. 10 may be assigned the letters L,
R, and N, in accordance with the two-dimensional partitions in Fig. 9.
Many tangent points may be identified on the partition line Se. It turns out that all the

0.2 0.9 x 1.6

Fig. 8. Attractor in the dissipative standard map, shown in the x~y plane instead of the r-0 plane, cf. Fig. 3.
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Fig. 9. A Poincaré section at @ = 0.775, A = 0.325, B = 1.2, and « = 0.0124. The partition lines ®S, ®G, and the
pre-image ®D of S divide the attractor into three parts, denoted by the letters L, R, and N.
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S D 0, G

Fig. 10. The first return map obtained by mapping the attractor in Fig. 9 to the 6, — 6,,; plane.

forward symbolic sequences for attractor points have at least 11 leading letters in common.
For example, two points are

T,: ... LLLLRLRRLRRLRRNRDSeRLNRRLRRLNRLNRRLRRLN ...,
T,: ... RRRRRRRRRRRRRRRRDSeRLNRRLRRLNRRLRRRLRRL .. ..
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On the line G® the common leading string of all forward sequences are determined to be
at least 16 letters long. Two of these tangencies are

7;5: ... RLRLRRLRLRRLRLRRLG®RRLRRRLRRRLRRRLRLNRR ...,
T,: ... RRRRRRRRRRRRRRRRLG®RRLRRRLRRRLRRRLRRLNR .. ..

In reducing the two-dimensional attractor to one-dimensional return map, we should pick
out the smallest forward sequence among all tangencies at S® to be the kneading sequence
K, and pick out the greatest forward sequence among all tangencies at G® to be the
kneading sequence K. Among all the tangencies we have determined these are T, and T,
respectively.

KszT]
KG=T4

RLNRRLRRLNRLNRRLRRILN .. .,
RRLRRRLRRRLRRRLRRLNR .. ..

(20)

il

Compared with the original 2D map, the 1D circle map given by these Kg and K puts
less constraints on allowed orbits. Since on either partition line the common leading string
of forward sequences is quite long (over 11 or 16 letters) no difference between the 1D and
2D maps can be recognized if only periodic orbits with periods shorter than 11 are
concerned.

The knowledge of the two kneading sequences (20) determines everything in the
symbolic dynamics of the circle map [16]. For example, one may define a rotation number
W, also called a winding number, for a symbolic sequence by counting the weight of letters
R and N, i.e. those on the right branch of the first return map, in the total number £ of all
letters:

W = lim -(number of R and N). @1)
"% n
A chaotic regime is associated with the existence of a rotation interval, a closed interval in
the parameter plane [21]. Within a rotation interval there must be well-ordered orbits. We
can construct some of these well-ordered sequences explicitly, knowing the kneading
sequences K and Kg.

In our case it can be verified that the ordered periodic orbits (RRL)* and [(R’L)’R’L]”
are admissible. These two sequences have rotation numbers 2/3 and 11/15, so the rotation
interval of the circle map contains [2/3, 11/15], inside which there are rational rotation
numbers 5/7, 7/10, 8/11, and 9/13 with denominators less than 15. Their corresponding
ordered orbits are (R’LR’L)*, [R’L(R’L)*]", [(R’L)’R’L]”, and [R®L(R?L)’]*. (For a
simple graphical method to construct symbolic sequence from a rational rotation number
see Fig. 4.8 in Ref. [2].)

We can further construct sequences which are not well-ordered from well-ordered ones
by the following transformation. One notes that the left limit of the point D is the greatest
point on the subinterval L, while the right limit of D is the smallest R. When the point D
is crossed by a continuous change of initial points the corresponding symbolic sequences
must change as follows:

greatest LN ... = smallest RL .. ..

Similarly, on crossing the critical point G another change of symbols takes place:

greatest R = smallest N.
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Neither change has any effect on rotation numbers. As an example, starting with the
ordered period 7 orbit (R’LR?L)* we obtain

LRRLRRR — LRRLNRR — LNRLNRR — LNRLNNR

as candidates for the fundamental strings in not well-ordered sequences of period 7.
Among the four sequences, the latter two are forbidden by K.

In this way we have determined all periodic sequences up to period 15, allowed by the
two kneading sequences (20). The result is summarized in Table 1. We have examined the
admissibility of all these sequences by using the four tangencies T;-T,. They are all
allowed. In fact, we have numerically found all these orbits in the Brusselator.

A more interesting case is encountered at @ = 0.66 and a = 0.0145. The attractor and
the primary partition lines are shown in Fig. 11, which manifestly shows two-dimensional
features. From the tangencies along the S® and Ge lines we list the following seven:

T,: ... RRRRRRRRRRRRRRLRDSeLNRLRLRLLNRLRRLRRLLN ...,
T,: ... RRRRRRRRRRLRLRLNDSeILNRLRLRLRLRLRRLRRLRR.. .,
7;: ... RRRRRRRRRRRRRRRLDSeILNRLRLRRLRRLRLRRLRRL ...,
T,: ...  RRRLRLRLRLRLILNRLDSeILNRILRRLRLRLRRLRRLRRL ...,
Ts: ... RRRLRLRLRLRLRLRLDSeILNRLRRLRRILRLNRLINRLR.. .,
Ts: ...  RRLRLRLRLRLRLRLLLGe®RLRRLRRLRRLLNLNRLRLR ...,
T,: ... RRRRRRRRRRRRRRRRLG®RLRRLRRILRRLRLEINLNLNL ....

Picking out the smallest forward sequences along Se and the greatest one along Ge, we get

Ks = Ts = LNRLRRLRRLRLNRLLNRIR .. .,
Kg = T; = RLRRLRRLRRLRLLNLNLNL .. ..

For the 1D circle map, we have determined all allowed periodic sequences up to period
11, which are listed in Table 2. Some of these cycles are now forbidden by certain
tangencies of the 2D Poincaré map. For example, among the four sequences of period 7
the cycle (NRLRLNL)”, denoted by an asterisk in Table 2, is forbidden by the tangency
T, since the shift (LNRLRLN)”®(LNRLRLN)” is in the forbidden zone of T,. There are

Table 1. Allowed periodic sequences up to period 15 for the circle map corresponding to @ =0.775 and

a=0.0124

P w Sequences

3 2/3 RLR RLN

6 2/3 RRLRLN

7 5/7 RRLRRLR RRLRRLN

9 2/3 RRLRLNRLN RRLRRLRLN
10 7/10 RRLRRLRRLR RRLRRLRRLN
11 8/11 RRLRRRLRRLR RRLRRRLRRLN
12 2/3 RRLRRLRLN RRLRRLRRLRLN RRLRLNRLNRLN
13 9/13 RRLRRLRRLRRLR RRLRRLRRLRRLN RRLRRLRRRLRLN RRLRRLRRLNRLN
14 5/7 RRLRRRLRRLRRLR RRLRRRLRRL RRLN RRLRRLN RRLRRLR
15 11/15 RRLRRRLRRRLRRLR RRLRRRLRRRLRRLN

Only non-repeating strings of the sequences are given. P denotes the period and W the rotation number.
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Fig. 11. A Poincaré section at w = 0.66, A =0.348, B=1.2,and a = 0.0145.

Table 2. Allowed periodic sequences up to period 11 for the 1D circle map corresponding to w=0.66 and

a = 0.0145

P w Sequences

2 1/2 RL NL

4 1/2 NRLL

5 3/5 RRLRL NRLRL

6 1/2 NRLRLL NLNRLL

7 4/7 RRLRLRL NRLRLRL RRLLNRL NRLRLNL

8 1/2 NRLRLRLL NLNRLRLL NRLLNLNL

8 5/8 RRLRRLRL NRLRRLRL

9 5/9 RRLRLRLRL NRLRLRLRL RRLLNRLRL' NLNRLRLNL'

9 5/9 NRLRLRLNL' NRLRRLLNL NRLRRLRLL NRLRLNRLL'
10 1/2 NRLLNLNLNL NRLLNLNRLL NRLRLLNLNL NRLLNRLRLL
10 1/2 NRLRLRLRLL NRLRLRLLNL
11 6/11 RRLRLRLRLRL NRLRLRLRLRL NLNRLRLRLRL NRLRLRLRRLL
11 6/11 NRLLNRLRLRL NLNLNRLRLRL NRLRLRRLRLL NRLRLLNRLRL
11 6/11 NRLRRLRLRLL NRLLNLNRLRL NLNLNLNRLRL NLNRLLNRLRL
11 6/11 NRLLNRLRRLL
11 7/11 RRLRRLRRLRL NRLRRLRRLRL

"Forbidden by 2D tangencies.

four forbidden sequences of period 9. All other cycles up to period 9 are allowed. We have
examined their admissibility and found all of them numerically. Compare the symbolic
plane Fig. 6 of the dissipative standard map with the symbolic plane of the Brusselator
shown in Fig. 12. The two figures look similar.

So far we have discussed only periodic orbits. In principle, the admissibility of any given
orbit can be examined. Although it is impossible to construct all admissible chaotic
sequences, we are able to tell the structure of some chaotic orbits. For instance, a chaotic
sequence may be obtained by randomly linking the segments LR and LLRR, as it can be
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Fig. 12. The symbolic plane of the attractor in Fig. 11. Together with the FFZ, 70000 points of real orbits are
shown, none of which falls inside the FFZ.

verified that all shifts of such a sequence fall in the allowed zone of the tangency T or Tg.
Furthermore, from the tangencies 7; and T it follows that any sequence consisting of only
the segments RL and LN is also admissible.

5. TRANSITION FROM ANNULAR TO INTERVAL DYNAMICS

When the nonlinear coupling « in the forced Brusselator (1) increases, the dynamics
undergoes a transition from annular type to that of an interval. It is interesting to trace the
change of the corresponding symbolic dynamics from circle type to unimodal type, in
particular, to watch how the number of symbols reduces from three to two. In the free
Brusselator there is a Hopf bifurcation, where the stable fixed point at (x, y) = (A, B/A)
loses stability and a limit cycle comes into being. All the rich dynamical behaviour of the
forced Brusselator appears as the interaction between the limit cycle and the linear
oscillator cos (wt) changes. Therefore, it is normal to expect that the nature of the unstable
fixed point plays an essential role in the transition under study.

Roughly speaking, the transition undergoes the following stages:

1. For a small enough «, the fixed point is an unstable focus, i.e. both eigenvalues are
complex with moduli bigger than 1. The phase portrait is an 1D closed curve and the
return map 6,.; — 6, is a subcritical circle map without any decreasing branch. The
symbolic dynamics is that of rigid rotation, i.e. with two letters of even parity.

2. At a first critical a the circle map undergoes a transition from subcritical to
supercritical regime. While the fixed point remains an unstable focus, the backward and
forward foliations begin to show tangencies. This signals the appearance of a decreasing
branch in the return map, requiring a third letter with odd parity to construct the
symbolic dynamics.

3. Upon further increase of « the fixed point becomes an unstable node, i.c. the two
eigenvalues both become real with moduli greater than 1. The phase portrait and first
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return map show two-dimensional feature clearly, e.g. multi-layered structure. However,
a standard-map type symbolic dynamics still works well.

4. When the modulus of one of the eigenvalues becomes less than 1, the fixed point
becomes a saddle. The predominant motion changes from rotational to vibrational. The
‘return plot’ in terms of 8,,,—-6, can no longer be treated as a one-dimensional map.
However, the phase portrait and the y, . ,—y, or x,,;—x, return map may be analysed by
using a Hénon type symbolic dynamics.

5. Further decrease of the smaller eigenvalue makes the attractor and the y,,;—y, return
map even more close to one-dimensional. The dynamics fits well into that of a unimodal
map.

These stages are demonstrated in Fig. 13, where we have collected the phase portraits of
the attractor, the 8,,,-6, and x,,,-x, return maps, at five different o values along the
vertical line w = 0.775 in Fig. 2.

The o =0.0124 case (top row in Fig. 13) has been discussed in detail in Section 4
(see Fig. 9). In fact, it is representative for a wide range of «, say, from 0.006 to 0.0154.
The 8,,,-8, return map is essentially a one-dimensional circle map.

At o =0.027 the fixed point is an unstable node with eigenvalues A; = —1.442634 and
A, = —1.2626734 (2nd row in Fig. 13). The two-dimensional feature of the attractor and
the 6,,,-6, return map calls for symbolic dynamics analysis, similar to that of the
dissipative standard map. However, after shrinking along the forward foliations, symbolic
dynamics of a one-dimensional circle map still captures the essentials.

Once the fixed point has become a saddle, e.g. at o =0.05, A, = —2.5226067 and
Ay = —0.4950224 (3rd row in Fig. 13), the dynamics is no longer annular type and Hénon
type symbolic dynamics must be developed, as will be done in Section 6.

Due to the change of the dynamics to interval type, the 6,.,-8, return maps for greater
values of @ are of no use. Now the x,,,—x, or y,,;—y, return maps should be used instead.
If the o = 0.08 case still needs two-dimensional consideration, the a = 0.2 case (last row in
Fig. 13) turns out to be one-dimensional to high precision. This explains our early success
in applying purely one-dimensional symbolic dynamics to the study of the forced Brussela-
tor.

An interesting, but open question is the connection between the three letters used in
annular type symbolic dynamics and the two letters used in Hénon type maps. It is a
prerequisite for the clarification of the relation between the Farey sequence in circle map
and the U-sequence in unimodal map and requires further investigation.

6. SYMBOLIC ANALYSIS OF INTERVAL DYNAMICS

Now we turn to symbolic dynamics analysis of the forced Brusselator when the interval
dynamics predominates. This happens, e.g. at the a =0.05 level in Fig. 2, i.e. along the
A =048 -0.2w or A =0.46 - 0.2w slanting lines in Fig. 1. In Fig. 14 we show a y—ow
bifurcation diagram of the Brusselator along the A =0.46 — 0.2w line in Fig. 1. It is
nothing but a plot of the y projection of the Poincaré section against the parameter w.

Only when the dynamics is controlled by a saddle-type unstable fixed point, the symbolic
dynamics is close to that of a mapping on an interval. This is the case, e.g. at @ = 0.705
and its vicinity, within the second chaotic band shown in Fig. 14.

Figure 15 shows the chaotic attractor in the background of the FCF (dashed lines) and
the BCF (dotted lines). The attractor, of course, is part of the BCF. The partition line Ce®
is determined from tangencies between FCF and BCF. From the tangencies along Ce we
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Fig. 14. The y—w bifurcation diagram for the forced Brusselator along the A = 0.46 — 0.2 line in Fig. 1.

choose the following six, which are enough to examine the admissibility of orbits no greater
than (RLLRC)™:

T,: L°RCORL’RLRL’RLR’L*RLRLRL?RLRL?RLR . .. (0.2897031163, 3.5304029647)
T,: L°R°*CeRL’RLRL’RLR*L’RL*RLRL?RL*RLRLR . .. (0.2800612211, 3.525107243 4)
T;: L"R*CORL?’RLRL?RLR’LR’L2RLRL?RLR?L . .. (0.278 1676187, 3.523 878 696 3)

T,: L"R’LR?*CeRL’RLRL?’RLR*LRL’RLRL*RL?RLR?L? . . .
(0.276691 0281, 3.522904 458 4)

Ts: L*"R?CeRL?RLRL?RLR’L2RLRLRL2RL’RLRL? . . . (0.2617705248, 3.5132942637)
Te: L°CORL*RLRL?2RLR’LRLRLR?L?’RL2RLR? . . . (0.2613067470, 3.512490519 5)

where C stands for either R or L. We have given the precise locations of the tangencies for
each.

Once a partition line has been determined, each orbit may be encoded with a doubly
infinite symbolic sequence like the one shown in (8). However, now it consists of only two
letters, R and L. Accordingly, the metric representation of symbolic sequences is somewhat
simpler as defined below.

We assign an integer €; =1 or —1 to a symbol s; when it is L or R. To each forward
sequence ®s;s, ... S, ... we assign a real number a:

w27, (22)
1

& =

20

1
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Fig. 15. The chaotic attractor, FCF (dashed lines), BCF (dotted lines), and the partition line C® at @
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where
= {0 it [Te = { ; (23)
1 i=1 —1.
Similarly, to each backward sequence ... s ... s55{® we assign a real number S:
ﬂ = ZV;ZAi, (24)
i=1
where

v; = {O if li[q = {1’ (25)
=1

-1.

According to these definitions we have
@(®RL") = f(L"Re) = 1, a(eL”) = p(L7e) =0,
a«(®RRL”) = a(®LRL*) = 1/2, B(L*RRe) = B(L“RLe) = 1/2.

In the symbolic plane, spanned by « and f3, forward and backward foliations become
vertical and horizontal lines, respectively. All forward (resp. backward) sequences may be
ordered according to their « (resp. ) values. The ordering rule may also be formulated as
follows:

(26)

oER ... > oEL .. ., eOR ... < eOL ...,
...REe > .. LEe, ... ROe < LOe,

(27)

where the finite string E (resp. O) consists of letters R and L and contains an Even (resp.
Odd) number of the letter R. The ordering rule (27) turns out to be the same as that of the
Hénon map with a positive Jacobian. For the Hénon map with a positive Jacobian the
relations (27) follow from the ‘local’ ordering, caused by the fact that both eigenvalues of
the fixed point R (L™) are negative (positive).

When foliations are well-ordered, the location of a tangency places a restriction on
allowed symbolic sequences. A point on the partition line Ce® may symbolically be
represented as QCeP. The rectangle enclosed by the lines QRe, QLe, oP, and eRL"
forms a forbidden zone in the symbolic plane. Therefore, a symbolic sequence UV with Ue
between QRe® and QLe®, and at the same time ®V > ®P must be forbidden by the tangency
QCeP. In the symbolic plane the sequence UV corresponds to a point inside the forbidden
zone of QCeP. Each tangency point on the partition line rules out a rectangle in the
symbolic plane. The union of the forbidden rectangles forms the fundamental forbidden
zone (FFZ), the left boundary of which is the pruning front [20].

Consider a finite set of tangencies {Q,CeP;}. If the shift of a sequence
Sk_2Sk_19S,Sx41 - - - satisfies the condition that the backward sequence ... s;_,5,_,® is not
between Q;Re® and Q,Le, and, at the same time, ®P, > ®s,s,,, ... for some i, then this
shift is not forbidden by any tangencies, owing to the property of well-ordering of
foliations. Thus, we may say that the shift is allowed according to that tangency. A
necessary and sufficient condition for a sequence to be allowed is that all of its shifts are
allowed according to the set of tangencies.

In order to check the admissibility condition, we draw 100000 points representing real
sequences generated from the Poincaré map together with the FFZ in the symbolic plane in
Fig. 16. Indeed, the FFZ contains no point of allowed sequences. At first glance, the
pruning front seems to be a straight line. A blow-up in the « direction shows the
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Fig. 16. The symbolic plane at w=0.705. A total of 100000 points representing real orbits are drawn together
with the FFZ. No point falls in the FFZ.

‘structure’, displayed in Fig. 17. Note that the o range of Fig. 17 is [0.9022, 0.9032] and the
structure shows off in even narrower range. The width of the FFZ steps in « may be taken
as an indicator of how good a one-dimensional symbolic dynamics will capture the
dynamics of the higher-dimensional system.

0
0.9022 « 0.9032

Fig. 17. A blow-up of the symbolic plane Fig. 16 in the interval o = [0.9022, 0.9032].
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In the one-dimensional unimodal map there are 802 admissible periodic sequences from
C to (RLLRC)” with periods less than or equal to 17, as may be verified by direct
generation of these words. Using the six tangencies, listed in the beginning of this section,
one may check their admissibility in the forced Brusselator at w = 0.705. The results are
partially listed in Table 3. A short-hand notation is used in the table. If the k-th shift of a
periodic sequence P*®P” is allowed or forbidden by a tangency T, we write the criterion
as kT or kT, respectively. In addition, (0 ... n)T =0T1T ... nT.

First, all sequences from C to RL*RLRL*RLC are allowed by T;. They correspond to
the horizontal Ce in Fig. 16 or 17. We have shown only the last period 11 in the first row
of Table 3. Second, all sequences greater than the period 12 in the next to last row of
Table 3 are ruled out by 7§, taken as the kneading sequence in a one-dimensional map.
Only in between these two limits two-dimensional symbolic dynamics is essential in telling
the admissibility of symbolic sequences. A case which exhibits two-dimensional features
more clearly was studied in Ref. [23].

Now we are in a position to treat problems like the missing 6P orbit (RL*RC)*, which
was mentioned in Section 2. It was the only missing member in the first U-sequence ever
reported in an ODE, when a numerical study was carried out up to period 6 orbits {12]. At
w=0.705 the ®(RL’RC)” sequence is bigger than the forward sequence in the tangency
Ts, which lies at the border of the attractor as its backward sequence L*Ce suggests. The
same happens at w = 0.8086 when

T,: L"CeRL*(RLR)’L?R?L’RLR?’L?R? ...  (0.2227039132, 3.894651919 3).

Therefore, in order to check the existence of (RL*’RC)™ we have to increase w further.
At w = 0.813 we have found the following tangencies, among others:

T,: L*RCeR’LR’L’R*L’RLR?LR ... (0.306 1753846, 3.751 890 5619)

Table 3. Admissibility of some periodic sequences not greater than (RLLRC)® at @ = 0.705

Sequence Period Admissibility Criterion
RLLRLRLLRLC 11 allowed 0...1007,
RLLRLRLLRLRRLLRLC 17 allowed 0T5(1 ... 16)T,
RLLRLRLLRLRRLC 14 allowed 07T5(1...13)T,
RLLRLRLLRLRRLRRLC 17 allowed 075(1...16)T,
RLLRLRLLRLRRLRRC 16 allowed 075(1... 15T,
RLLRLRLLRLRRLRRRC 17 forbidden 07,
RLLRLRLLRLRRLRC 15 forbidden 07,
RLLRLRLLRLRRLRLRC 17 forbidden 07T,
RLLRLRLLRLRRLRLC 16 allowed 0Ts(1 ... 15T,
RLLRLRLLRLRRC 13 forbidden 07T,
RLLRLRLLRLRRRRLC 16 allowed 0Ts5(1...15)T,
RLLRLRLLRLRRRRLRC 17 forbidden 0T,
RLLRLRLLRLRRRRC 15 forbidden 07,
RLLRLRLLRLRRRRRRC 17 forbidden 07,
RLLRLRLLRLRRRRRC 16 forbidden 074
RLLRLRLLRLRRRRRLC 17 allowed 0Ts(1...16)T,
RLLRLRLLRLRRRC 14 forbidden 0T,
RLLRLRLLRLRRRLRLC 17 allowed 0Ts(1...16)T,
RLLRLRLLRLRRRLRC 16 forbidden 074
RLLRLRLLRLRRRLRRC 17 forbidden 07,
RLLRLRLLRLRRRLC 15 allowed 07s(1...14)T,
RLLRLRLLRLRC 12 forbidden 07,
RLLRC 5 forbidden 0T

C stands for either L or R. Only non-repeating strings of the sequences are given. For the short-hand notation
in the ‘Criterion’ column see text.
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T,: L”RL?’RCeR’LR?L’R*LR’L’R? ... (0.3046272696, 3.7523974214)
T;: L*R’LRCOR’LR*LR’L*RL’RL’R” ... (0.3034750175, 3.7557525940)
T,: L”R’LR?’CeRL’RLRZL’R?’L’R’L ... (0.2796800264, 3.9036680156)
Ts: L*R?CeRL’RLR2LRZL3R’L? ... (0.2792305152, 3.905714 160 3)

Te: L*CeRL’RZLRL’RLR?L?RL? ... (0.2280005929, 3.9076571391).

(We use the same notations 7;. This will not cause confusion as  is indicated.) Now T
alone cannot either exclude or justify the existence of (RL’RC)®, but Ts does forbid it. At
w = 0.821 the relevant tangencies are:

T,: L*RCeR’L’R’L’R’L?R’L’R? ... (0.2989218748, 3.7654333938)

T,: L*RL?’RCeR’L’R?L*RZL?R?L’RL ... (0.2988911021, 3.7655110292)

T;: L”RL?’R?LRCOR?LR?L’R*L?R’L°RZL ... (0.2937300778, 3.778 573024 8)
T,: L”R’LR?CeRL*RZLRL’R*L?R’L ... (0.2702735209, 3.940 527 446 6)

Ts: L*CeRL’R’L*RLRZL’RLR? . .. (0.2183895653, 3.947 673904 6).

Now both 7; and T, exclude the (RL*RC)* sequence, but 75 does nothing. The
situation becomes clearer when we draw the foliations, going through the two tangencies.
In Fig. 18 the diamond indicates the tangency T, and the square T,. Dash lines show

y { | 1 1 L

| | | 1 |

0 0.2 0.4 0.6 0.8 1 X 1.2

Fig. 18. The forward foliations (dash lines) of the tangencies T3 (diamond) and T, (square) and the backward
foliation (solid line) of 73 at w = 0.821.
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the forward foliations through 7, and T,, and the solid line represents the backward
foliation of Tj.

According to the order rule (27), the forward foliations associated with ®(RL’RC)" .. .,
n=2,3, ..., must be located in the region between the two forward foliations of 73 and
T,. At the same time, the backward foliation associated with the sequences
(RRL’R)"Ce® and ... (LRL?R)"Ce necessarily lie in the region below the backward
foliation of T5. Consequently, they are separated by the foliations of T;. This leads to the
non-existence of (RL*RC)"®(RL3RC)", (n — ).

The foregoing discussion clearly shows that the periodic sequence (RL’RC)” is always
forbidden as w varies, i.e. the ‘missing’ period six RL’RC actually does not exist.

In this way we have checked the U-sequence in the periodically forced Brusselator up to
period 7. The results are listed in Table 4. This is to be compared with the early numerical
results of 1983 [12]. Now instead of ‘missing’ we are able to say firmly which orbits are
forbidden. This kind of results can never be obtained either by numerical work or by
analytical arguments. It also tells the necessity of invoking two-dimensional symbolic
dynamics in exploring global behaviour of ODEs.

Before concluding this section, we note that one should be aware of some subtleties
which may impede a straightforward symbolic dynamics analysis. For example, behind the
seemingly regular pattern of the bifurcation diagram in Fig. 14 some qualitative changes
take place in the behaviour of short periodic orbits, which may affect the overall dynamics.

Usually the dynamics on a chaotic attractor is largely dictated by short unstable periodic
orbits, say, the fixed point and period 2 orbits (1P and 2P). This is the case at @w = 0.79 or
smaller. When @ = 0.8015 and higher, 1P and 2P orbits lie definitely outside the chaotic
attractor. The unstable 2P may be further ‘swallowed’ by 1P. (This is to be distinguished
from the case when a stable 2P merges into a stable 1P in an inverse period-doubling
cascade, as often encountered in the discussion of ‘antimonotonicity’ of period-doublings.)

The 2P orbit exhibits some more even subtle change. We sketch this in Fig. 19. The

Table 4. Periodic windows along the A = 0.46 — 0.2w line in Fig. 1

Word Period Range in @ Width of the window
ct 1 0-0.3685224 0.3685224

RC 2 0.368 6-0.555489 0.186 889
RLRC 4 0.5555-0.5777 0.0222
RLRRRC 6 0.58249-0.58251 0.00002
RLRRRRC? 7 0.582989 983 4-0.582 991 029 838 0.000001 046438
RLRRC 5 0.5845-0.5848 0.0003
RLRRLRC' 7 0.588405 805 31-0.588458 1887 0.000052 383 39
RLC 3 0.5947-0.654 0.0593
RLLRLC 6 0.6545-0.7025 0.048
RLLRLRC' 7 0.7029938-0.703028 1 0.0000343
RLLRC 5 0.7068-0.7115 0.0047
RLLRRRC' 7 0.71438661936-0.7144453 0.000058 680 64
RLLRRC 6 0.718-0.7185 0.0005
RLLRRLC' 7 0.72155998671-0.721 72707 0.000167 08329
RLLC 4 0.7325-0.792 0.0595
RLLLRLC 7 0.8035-0.8056 0.0021
RLLLRC 6 forbidden

RLLLRRC 7 0.8193810237-0.81965913 0.0002781063
RLLLC 5 0.8259-0.8675 0.038
RLLLLRC? 7 forbidden

RLLLLC 6 0.9015-0.923 0.0215
RLLLLLC 7 0.959-0.974 0.015

*Added by us as compared to the U-sequence published in Ref. [12].
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Fig. 19. A sketch of orbital stability transitions of 1P and 2P along the A = 0.46 — 0.2w line (not to scale). Solid
and dashed lines indicate stable and unstable orbits, respectively.

transition points have been determined numerically: oi® = 0.2002249, ;" = 0.36852283,
w¥ = 0.8202573, wf’ = 0.5554892, ¥ = 0.7901221, o¥ = 0.7901319, o} =
0.79306117537476, w3 =0.8162116. Numerical investigation reveals that the orbital
stability transitions of 4P is similar to that of 2P.

It is worthy of note that a secondary Hopf bifurcation (also called a Neimark or flutter
bifurcation [22]) takes place at wj'. In Table 5 we list the complex conjugate eigenvalues
(A+) and their moduli (|A|) of the 2P orbit in the vicinity of w3 . The determinant J of the
linearized stability matrix of 2P is also given. The relations among these quantities are
J=MAA_ and |A| = V(A,A_) or A, =|A|e*™® where ¢ =tan"!(ImA/ReA). As seen from
Table 5, when w crosses wj , |A| crosses 1. In other words, when w varies from 0.793 04 to
0.79308 the complex eigenvalues cross the unit circle in the complex plane at an angle
¢+0, 7.

The Neimark bifurcation is a bit more complicated than the analogous Hopf bifurcation
from a fixed point. A limit torus appears instead of a limit cycle. The motion on such a
limit torus is quasiperiodic.

7. CONCLUSIONS

We have shown that numerical study under the guidance of symbolic dynamics provides
a powerful means to explore the global property of ODEs in their phase and parameter
spaces. This combined use of numerical and topological methods yield results that cannot
be obtained either by purely numerical search or by entirely analytical arguments. So far,
this method has been applied to the analysis of the NMR-laser chaos model [24], the
two-well Duffing equation [25], in addition to the forced Brusselator (present work and
[23]) and the Lorenz model [4]. We hope it will be used more widely in the future.

As the periodically forced Brusselator is concerned, the transition from annular to
interval dynamics has enabled us to trace how the symbolic dynamics evolves from that of
1D circle map to 1D unmodal map via the 2D dissipative standard map and 2D Hénon
map. Although some deeper questions, e.g. the analysis of the transition from the
U-sequence in the 1D unimodal map to the Farey sequence in the circle map, remain to be
tackled, it has furnished a framework for the study of other periodically driven systems.

In addition we have analyzed an interesting case of Neimark bifurcation in the forced

Table 5. The eigenvalues (1.) and their moduli (|4]) of 2P orbit at and close to wf

® J Ae [Al
0.793 04 0.9993611278 —0.712 4654666 + 0.7012517999i 0.9996805129
P 1.0000000000 —0.7106700193 =+ 0.703 525496 1i 1.000 000000 0

wWyq
0.79308 1.0005682704 —0.7090736776 * 0.7055372351i 1.000284094 8
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Brusselator and elucidated some subtle changes in unstable short periods. The case when
unstable 1P and 2P get out of the attractor shows once more the necessity to invoke the
tangencies between the forward and backward foliations for the determination of partition
lines in two-dimensional symbolic dynamics.
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