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Abstract—The Lorenz equations are investigated in a wide range of parameters by using the method
of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is
compared with that of the one-dimensional (1D) cubic map, which shares the same discrete
symmetry with the Lorenz model. It encompasses all the known periodic windows of the Lorenz
equations with only one exception. Second, in order to justify the above approach and to understand
the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric
Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in the light of
symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincaré
return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the
Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination
with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with
a discontinuity describe the topological aspects of the Lorenz equations to high accuracy.

1. INTRODUCTON

The Lorenz equations

i=o(y - x),
y=rx —xz -y, (1)
Z=xy — bz,

where o, r, b are positive parameters, corresponding to the Prandtl number, the Rayleigh
number, and a geometric ratio, respectively, were first derived from a model of thermal
convection between two infinite plates by B. Saltzman and E. N. Lorenz in the early 1960s
[1, 2]. A few other physical problems are also known to yield the same set of equations,
see, e.g. the monograph by C. Sparrow [3]. Being one of the first examples exhibiting a
strange attractor in dynamical systems, this system has become a touchstone for many new
ideas in chaotic dynamics. A number of interesting phenomena such as preturbulence, long
transient chaos, noisy-periodicity and intermittency, has been first observed and interpreted
in these equations.
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The equations (1) are invariant under the transform

X— —X,
y— =y, (2
— Z.

This symmetry hints on a closer relation of the Lorenz equations to the one-dimensional
antisymmetric cubic map

Xue1 = (A, x,) = Ax) + (1 — A)x,, (3)

where x € [~1, 1] and the parameter A € [1, 4]. Indeed, a comparison of the systematics of
stable periodic orbits in the Lorenz system with that of the map (3), using symbolic
dynamics of three letters, has led to somewhat surprising results: 47 out of 53 primitive
stable periods were described and ordered just as periodic orbits in the cubic map (3) [4].
(By primitive periodic orbits we understand those that do not come from period-doubling.)
The present paper corrects the 6 non-cubic words and extends the figure to 67 with only
one exception.

We mention in passing that a by-product of the study consists in that now we know the
absolute nomenclature of stable periods in the Lorenz equations. Being an autonomous
system, there does not exist a fixed reference time, in whose units one can measure other
periods. Therefore, in all 150 and odd papers on the Lorenz equations no authors have
used, e.g. ‘period 5’ to name an observed orbit. However, the symbolic dynamics
description automatically furnishes these periods, which in turn coincide with that obtained
in an extensive power spectra study of the Lorenz equations [5].

In a sense, these results are too good to be expected. One may ask many questions. Why
does symbolic dynamics of a one-dimensional map work so well for a system of differential
equations? Why did many words, allowed in the cubic map, not appear in the Lorenz
equations? Where should one look for non-cubic words in the Lorenz equations and how to
understand these exceptional cases? Can one predict new periodic orbits which should exist
in a certain parameter range? Essentially, these problems may be elucidated only by
invoking symbolic dynamics of two-dimensional mappings, as Poincaré maps for the Lorenz
equations are actually two-dimensional.

In the meantime our understanding of symbolic dynamics of one-dimensional maps with
multiple critical points and discontinuities has deepened significantly, see, e.g. [6, 7].
Symbolic dynamics of two-dimensional maps, such as the Hénon map [8-13], the Lozi map
[14-16], and the Tél map [17, 18], has also been developed. Equipped with all this
knowledge, we are now in a better position to answer the aforementioned questions on the
Lorenz equations.

So far, most of the numerical and analytical studies on the Lorenz equations have been
restricted to a one-parameter sub-family, defined by the straight line o = 10, b = 8/3, and
r >0 in the parameter space. Another sub-family, along the line 0 =16, b =4, and r > 0,
was investigated mainly by Japanese authors [19], but did not lead to a qualitatively new
picture. Early knowledge on the Lorenz equations has been extensively reviewed in a
monograph [3]. We summarize some of the known results along the first parameter line for
further reference.

The origin (x, y, z) =(0,0,0) is globally attracting for r <1. At r =1 the origin loses
stability and a pair of fixed points

q= = (£V(b(r = 1) £ V(b(r - 1)), (r = 1)), (4)

appears. For 1 <r <r,=13.926 every trajectory approaches one of the fixed points. At
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ro = 13.926 the first homoclinic explosion takes place and there appears an invariant set
which includes a countably infinite number of periodic orbits, an uncountable number of
aperiodic orbits, and an uncountable number of initial values, which are eventually
attracted to the origin. For r > r; the above invariant set remains qualitatively unchanged.

For r = rp =24.06 another transition takes place. The invariant set becomes a strange
attractor. In addition, an infinite sequence of homoclinic explosions begins at this r value.
For ry <r <ry=24.74 there exist a stable chaotic attractor and a pair of stable fixed
points. At ry = 24.74, both g* become unstable. For r > ry no stable fixed points exist any
more. For r > r; = 30.1 stable periodic orbits may appear. We will concentrate on the
dynamics for a wide range of r > ry = 24.74.

Perhaps, J. Guckenheimer and R. Williams [20-22] were the first to apply symbolic
dynamics to the Lorenz equations. For the parameter value o =10, b = 8/3, and r = 28,
they gave a geometric description of a flow, based upon an examination of the Poincaré
return map F of the ‘rectangle’ X, contained in the plane z = r — 1, as shown in Figure
5.7.1 of [22]. The rectangle = has opposite sides which pass through the equilibrium points
g~ and ¢”*. In addition, z <O at all interior points of £, so X is a cross-section for the
flow. The = plane has been used by many authors since all the interesting trajectories
intersect this plane. Guckenheimer and Williams suggested a ‘geometric Lorenz attractor’
G, which should grasp the essential, topological feature of the Lorenz equations. A
one-dimensional map f;(%,), shown schematically in Fig. 15, is then extracted from the
geometric attractor. We attach a subscript g to distinguish it from another one-dimensional
map f(u), shown in Fig. 9, which will be deduced from an ‘extended geometric Lorenz
attractor’ G to be suggested in this paper. Guckenheimer and Williams studied the
structure of orbits in the phase space by using a one-dimensional symbolic representation of
the map f(u,).

Y. Aizawa [23] used symbolic dynamics to Lorenz equations in the context of intermit-
tency. His approach was related to an extension of the maximal z map of Lorenz [2] to
higher values of the parameter r and was less relevant to our work.

In his monograph [3] C. Sparrow introduced a two-symbol system using x and y: an
orbit is assigned a letter x every time it makes a revolution around the fixed point g~,
while a letter y indicates a revolution around the fixed point g~. Consecutive revolutions
around one and the same fixed point is indicated by a power, e.g. x2y = xxy. In Section 3
we will indicate the relation between this symbolic description with our symbolic dynamics.

This paper is based on a great amount of numerical data and on our knowledge of
symbolic dynamics of one- and two-dimensional maps. In order to avoid any confusion of
terms we list below the maps to be dealt with in this paper.

1. The simple continuous 1D antisymmetric cubic map (3).

2. A two-dimensional antisymmetric cubic map (10) or its piecewise linear counterpart
(13), used to introduce concepts and notations of two-dimensional symbolic dynamics.

3. The geometric Lorenz attractor G, extracted from the Lorenz map F at r =~ 28 by
making some geometric assumptions [see, e.g. [22] and the 1D Lorenz-type map
fe(&,), inferred from the former.

4. An extended geometric Lorenz map G and its associated 1D map f(u), inferred from
the Lorenz map F at higher values of r, say, r > 46, in much the same way by
making further geometric assumptions.

5. The actual return map F in the Poincaré section Z, taken at z=r — 1. In the
following we will refer to F as the Lorenz map. Our final goal is to suggest a
workable symbolic dynamics for the Lorenz map F.

We will take a physicist’s approach to the problem and rely more on numerical evidence,
rather than attempt to do mathematics ourselves.
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The paper is organized as follows. Section 2 summarizes briefly symbolic dynamics of the
one-dimensional antisymmetric cubic map (3). Then a detailed comparison between the
systematics of the periodic windows in the Lorenz equations and that of map (3) is
presented in Section 3. Being the main body of this paper, Section 5 consists of four parts.
In Section 5.1, the two-dimensional ‘extended geometric Lorenz map’ G is extracted from
an examination of the Lorenz map F in different parameter ranges. The symbolic dynamics
of this map is identical to that of the one-dimensional map f(u), shown in Fig. 9. In
Section 5.2 an explicit two-dimensional representation of the symbolic dynamics for the
Lorenz map F is constructed. Based on this map, we can predict whether a trajectory exists
or not in the Lorenz equations. This is verified for stable periodic orbits up to length six in
Section 5.3. Section 5.4 discusses the relation between the extended geometric Lorenz
attractor with the geometric Lorenz attractor of Guckenheimer and Williams. We conclude
with a discussion in Section 6.

2. THE ANTISYMMETRIC CUBIC MAP

The cubic map (3) maps the interval [—1, 1] into itself when A varies in [1, 4]. The
shape of h(A, x) is shown in Fig. 1 where C, C denote the two critical points, which divide
the interval [—1, 1] into three subintervals, labeled by L, M, and R, respectively, thus
leading to a ternary partition by the map. The function A(A, x) behaves monotonically on
these subintervals. We assign a positive (+ or even) parity to the monotone increasing
branches hg; and h; as well as to the corresponding branches of the inverse function
R(y)=hz'(y) and L(y)=h;'(y). Here we have used the same letter to denote the
subinterval and the inverse function on it, a useful convention in practice. Similarly, a
negative (— or odd) parity is assigned to h,, and M(y) = hy(y).

Owing to the antisymmetric property, there are two kinds of periodic orbits, symmetric

Tnti

L

Fig. 1. The shape of the one-dimensional antisymmetric map.
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and asymmetric ones. A symmetric periodic orbit satisfies h"P(A,x) = —x, n being the
length of the orbit and x being a point in the orbit; asymmetric orbits do not satisfy the
above relation.

Symbolically, each point x in an orbit can be labeled by one of the five letters L, C, M,
C, or R, according to whether it satisfies x <C, x=C, C<x<C,x=C,orx>C. A
symmetric superstable orbit, which starts from C, corresponds to a symbolic sequence

Coy0, - 0,C070; - - - 6,C = CPCPC,

where o; is either L or M or R; G, is the conjugate of o;, obtained by interchanging L and
R, but leaving M unchanged. Similarly, an asymmetric superstable cycle looks like

Co,0, -+ 0,C=CPC.

We omit C hereafter as understood and simply call P a pattern or a word.

Given two patterns P, = P*o and P, = P*u, where P* denotes their common leading
string and o # u, an order is defined in the following way.

First, there is a natural order

L<C<M<C<R (5)

on the interval /. Being different letters, o and u must have been ordered according to (5).

Second, if P* contains an even number of M (we simply say P* is even), then P, > P if
u> o, and P, < P, otherwise. If P* is odd, then P,> P, if u< 0, and P, < P, otherwise.
This follows from monotonicity of the map on each subinterval L, M, and R. In other
words, the ordering rule can be written as

EyR--->EM--->E,L ...

(6)
OyR -+ < OyM --- < OyL ...,

where E,(O,) represents a common leading string with an even (odd) number of
letter M.

Generally speaking, the order on the parameter axis does not have a definite relation-
ship with ordering of the words. However, in the antisymmetric map (3), if we denote
the parameter value associated with a pattern P by Ap, then the following nice property
holds [24].

If P, < P,, then Ap < Ap,, and vice versa. ‘ @)

This property can be partially verified by inspecting Table 1, where all admissible
periodic patterns of period 7 and less as well as their corresponding parameter values are
listed. We will refer to these values when studying the Lorenz equations in the next
section.

It is important to note that the ordering of these sequences does not depend on the
particular model. It is universal for all mappings with two critical points and the
antisymmetric property. Of course, the parameter values in Table 1 do depend on the
mapping (3) and may be determined by using the word-lifting technique [25]. Therefore,
following Metropolis et al. [26], we shall call this ordering a U-sequence of symbolic
sequences.

A symbolic sequence is called admissible, if it may be produced by the mapping at some
parameter A and initial value x,. Put in other words, an admissible symbolic sequence
corresponds to a real orbit of the mapping. Obviously, not every word, made of L, C, M,
C, and R, is admissible.

For a pattern P we denote by £(P) the set of all subsequences of P that immediately
follow one or another letter L in P, i.e.
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Table 1. Asymmetric superstable periodic in the antisymmetric cubic map. An asterisk denotes a symmetry-
broken orbit

No. Period Word A No. Period Word A
1 2* R 3.1213203 26 6 RRMRR 3.9254576
2 4 RMR 3.2628786 27 6 RRMRM 3.9350271
3 6 RMRLR 3.3340241 28 5 RRMR 3.940904 4
4 6* RMMIM 3.4632834 29 6 RRMRL 3.9464110
5 6 RMMLR 3.5282272 30 6 RRMML 3.9504721
6 4 RMM 3.5480858 31 5 RRMM 3.9553274
7 6 RMMMR 3.5659880 32 6 RRMMM 3.9597015
8 6 RMMMM 3.5911819 33 6 RRMMR 3.9637998
9 5 RMMM 3.6150319 34 4 RRM 3.9675403
10 5 RMMR 3.6662070 35 6 RRMLR 3.9710914
11 3 RM 3.7003155 36 6 RRMILM 3.9745198
12 6 RMLRM 3.7029849 37 5 RRML 39777816
13 5 RMLR 3.7339407 38 6* RRRLL 3.9818990
14 5 RMILM 3.7753839 39 5 RRRL 3.9854885
15 6 RMLMM 3.790908 8 40 6 RRRILM 3.9878905
16 6 RMILMR 3.807 3689 41 6 RRRLR 3.9900272
17 4* RRL 3.8398944 42 4 RRR 3.9919300
18 6 RRLMR 3.8610860 43 6 RRRMR 3.9936280
19 6 RRILMM 3.8734615 44 6 RRRMM 3.9951295
20 5 RRILM 3.8835860 45 5 RRRM 3.996 4269
21 6 RRILML 3.8933550 46 6 RRRML 3.9975231
22 6 RRLRL 3.8982992 47 6 RRRRL 3.9984117
23 5 RRLR 3.9069063 48 5 RRRR 3.9991078
24 6 RRLRM 3.9144901 49 6 RRRRM 3.9996037
25 3 RR 3.9249907 50 6 RRRRR 3.9999009
$(P) = {Y|V possible decompositions P = XLY} 8)

where X and Y are symbolic patterns made of L, M, and R. Similarly, we define A(P)
and R(P). Denote by K, and K, the symbolic sequences, produced by the first iterate of
the maximal point C and the minimal point C, respectively. These are the kneading
sequences of the map. The antisymmetry of the map yields K, = K,, where the conjugate
K, of K, is obtained by interchanging L and R, but leaving M unchanged. The
admissibility conditions for a pattern P can be read off from the shape of the mapping

function, shown in Fig. 1.
$(P) < K,,
K, < M(P) < K,, 9)
K, <R(P).

It is easy to check that all the words in Table 1 satisfy these conditions. An example
which does not belong to the U-sequence is P = CRMLRC, for which a member of %(P),
namely, RC --- > K, = RMLRC ..., thus violating the first condition in (9). We will
return to this counter example later.

3. THE SYSTEMATICS OF PERIODIC WINDOWS IN THE LORENZ MODEL

We start by inspecting the bifurcation diagram of the Lorenz equations, obtained by
plotting the stationary values of x; in the Poincaré section = against the parameter r. A
segment of the bifurcation diagram is shown in Fig. 2. The dark lines and periodic windows
in this bifurcation diagram, as well as the symmetry breakings and restorations in it,
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suggest the possibility to use a one-dimensional antisymmetric map such as (3) to capture
the essential features of the Lorenz equations.

In order to get a feeling of the underlying ‘one-dimensional’ map, we draw a first return
map for x, i.e. x;,; ~ x; dependence, using the x; values only from the Poincaré map.
Figure 3 shows a periodic orbit at » = 172.77 (diamonds), superimposed on a chaotic orbit
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Fig.3. A periodic 6 orbit at r =172.77 (diamonds), shown on the background of a chaotic trajectory at
r = 172.81 (dots).
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at a near-by parameter r = 172.81 (dots). Looking at the periodic points alone, one can
imagine them as distributed along a one-dimensional ‘cubic’ curve. The chaotic attractor,
though exhibiting one-dimensional structure, cannot be taken to be a single-valued
mapping function due to bending back which leads to self-intersection.

However, for reasons which will become clear in Section 5, we may consider the
bent-back part of the attractor as a continuation of the curve before the bend, thus
determining two critical points C and C, as well as the ‘monotone’ branches L, M, and R,
as shown in Fig. 3. From the symbol assignment at r = 172.81, the symbolic sequence for
the period 6 orbit at a near-by parameter r = 172.77 is derived to be (RMLMRR)".

In practice, we always determine the symbol assignment for a periodic orbit from that of
a closely related chaotic orbit, using two approaches. The first approach looks at the
chaotic orbit right before the tangent bifurcation, which gave birth to the periodic orbit in
question, as we just described on the example of Fig. 3.

The second approach makes use of the ‘semi-attractor’ or chaotic transients [27] at the
same parameter value as the periodic orbit. Numerically a semi-attractor may be obtained
as follows. Take a set of initial points, distributed randomly in the attracting set of the
equations (for the Lorenz system this usually means a region with |x| <40, |y| < 100, and
|z] <200) and iterate a number of times. The first few, say, five interactions are not
plotted. The iterations are stopped when the trajectories get close enough to the stable
periodic orbits. The semi-attractor, outlined in this way, looks quite similar to a chaotic
attractor, obtained at a near-by parameter. Thus the two methods lead to the same word
for the periodic orbit. It is clear that the word (RMLMRR)” develops into a superstable
word (RMLMRC)® by slightly adjusting the parameter r in the right direction. Therefore,
we simply denote this periodic window by RMLMR. This has been done for other periodic
windows as well.

We summarize our results in Table 2, where all periodic windows discovered so far by us
and by other authors are listed in descending r order along with their periods, symbolic
sequences and locations on the parameter axis. Only primitive periods, i.e. those which do
not come from period-doubling, are shown in Table 2, except for a few period-doubled
regimes of the first period 2 orbit. In Table 2 ‘Period’ equals the number of points seen in
the Poincaré section X for a periodic orbit. We also give the parameter A for the
corresponding superstable word in the one-dimensional map (3) for later use.

Table 2 clearly shows that all 67 periodic sequences except for one (No. 10) do fit into
the cubic scheme. Moreover, the ordering of all these words happens to be exactly the
same as that of their one-dimensional counterparts along the increasing A direction. Take,
for example, P, = RRLR at r, = 114.0 and P, = RRLRRL at r, = 107.613. In the cubic
map (3) P, > P, according to the ordering rule, given in Section 2, and it follows from
property (7) that Ap > Ap. However, in the Lorenz equations we have r; > r,. This
simply says that the descending r order in the Lorenz equations corresponds to increasing
A order in the cubic map (3). Therefore, parameter 7 in the Lorenz model is, in a sense,
opposite to the parameter A in the cubic map.

The only non-cubic word left in Table 2, namely, the word coming from the symmetric
CRMLRC at r =191.982 — 191.985, does not satisfy the admissibility conditions of the
cubic map (3). We have mentioned this at the end of Section 2. This fact is not surprising,
as the return maps of the Lorenz equations are not one-dimensional. We will return to the
reason for the appearance of such words in Section 5.2.

Now we are in a position to say that apart from one exception the skeleton of the
systematics of periodic windows obeys the ‘cubic’ law, or put in other words, symbolic
dynamics underlying the global periodic structure of the Lorenz equations appears to be
essentially the same as that for the cubic map for most of the parameters. To understand
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Table 2. Periodic windows for the Lorenz equations. All of them can be fit into the ‘cubic’ scheme except for No.
10. An asterisk denotes a symmetry-broken orbit; the original symmetric orbit is indicated in parentheses

No. Period Word A r range
1 2* R (CO) 3.121320 314-229.42
4 RMR 3.262879 229.42-218.3
8 RMRLRMR 3.293843 218.3-216.0
16 RMRLRMRMRMRLRMR 3.300475 216.0-215.5
2 24 RMRLRMRMRMRLRMRLRMRLRMR 3.303736 215.08-215.07
3 12 RMRLRMRMRMR 3.309068 214.06-213.99
4 6 RMRLR 3.334024 209.45-209.06
5 10 RMRLRLRMR 3.344538 207.12-207.106
6 8 RMRLRLR 3.352641 206.528-205.486
7 10 RMRLRLRLR _ 3.358220 204.123-2.04.116
8 14* RMRLRLRLMLRLR(CRMRLRLC) 3.373058 200.665-200.638
9 10* RMRLMLMLR(CRMRLC) 3.394393 198.99-198.97
10 10* RMLRMLMRL(CRMLRC) not cubic 191.985-191.982
11 5 RMLR 3.733941 190.81-190.80
12 7 RMLRLR 3.739312 189.561-189.559
13 9 RMLRLRLR _ 3.740172 188.865-188.863
14 16* RMLRLRLMLMRLRLR(CRMLRLRLC) 3.740750 187.25-187.248
15 12* RMLRLMLMRLR(CRMLRLC) 3.742852 185.80-185.74
16 8* RMLMLMR(CRMLC) 3.755828 181.65-181.12
17 10 RMLMLMLMR 3.767426 178.0745
18 12* RMLMLRLMRMR(CRMLMLC) 3.767734 177.81-177.78
19 6 RMLMR B 3.790909 172.797-172.758
20 16* RMLMRMLMLMRMLMR(CRMLMRMLC) 3.819041 169.902
21 10 RMLMRMLMR 3.823171 168.58
22 4* RRL(CRC) 3.839895 166.01-146.2
23 12 RRLMRRLLRRL 3.844115 146-145.94
24 20* RRLMRRLLRMLLRMLLRRL
(CRRLMRRLLRC) _ 3.845424 144.38-144.35
25 12* RRLMRMLLRML(CRRLMRC) 3.846750 143.442-143.322
26 6 RRLML 3.893355 136.818-136.79
27 10 RRLMLLRRL ~ 3.893743 136.21
28 16* RRLMLLRMLLRMRRL(CRRLMLLRC) 3.893849 135.485-135.465
29 8* RRLRLLR(CRRLC) 3.895 900 133.2-132.06
30 16* RRLRLLRRLLRLRRL(CRRLRLLRC) 3.897 809 129.148-129.127
31 6 RRLRL ~ 3.898299 126.445-126.41
32 12* RRLRLRLLRLR(CRRLRLC) 3.903069 123.63-123.56
33 8 RRLRLRL 3.903380 121.689-121.687
34 7 RRLRLR B 3.904451 118.134-118.128
35 14* RRLRLRMLLRLRL(CRRLRLRC) 3.906 043 116.925-116.91
36 5 RRLR B 3.906 906 114.01-113.9
37 10* RRLRRLLRL(CRRLRC) 3.918416 110.70-110.57
38 7 RRLRRL B 3.919481 107.625-107.618
49 14* RRLRRLMLLRLLR(CRRLRRLC) 3.921505 106.757-106.746
40 8 RRLRRLR i 3.922810 104.185
a1 16* RRLRRLRRLLRLLRL(CRRLRRLRC) 3.923422 103.636-103.632
4 3 RR 3.924991 100.07-99.93
43 9 RRMRRLRR B 3.925809 99.285-99.275
44 12* RRMLLMLLMRR(CRRMLLC) 3.979410 94.554-94.542
45 6* RRRLL(CRRC) _ 3.981899 93.20-92.16
46 12* RRRLLMLLLRR(CRRRLLC) 3.984133 90.20-90.163
47 14* RRRLLRRLLLRRL(CRRRLLRC) 3.985072 85.987-85.986
48 5 RRRL ~ 3.985489 83.39-83.36
49 10* RRRLMLLLR(CRRRLC) 3.988987 82.095-82.040
50 12* RRRLRRLLLRL(CRRRLRC) 3.991025 76.713-76.310
51 14* RRRLRRMLLLRLL(CRRRLRRC) 3.991706 73.457
52 4 RRR _ 3.991930 71.52-71.41
53 8* RRRRLLL(CRRRC) 3.997993 69.839-69.724
54 6 RRRRL ~ 3.998412 64.898-64.895
55 12* RRRRLRLLLLR(CRRRRLC) 3.998785 64.574-64.572
56 7 RRRRLR 3.998 898 62.069

continued



226 HAI-PING FANG and BAI-LIN HAO

Table 2. —continued

No. Period Word A r range

57 14* RRRRLRRLLLLRL(CRRRRLRC) 3.999 006 61.928

58 5 RRRR _ 3.999108 59.255-59.242
59 10* RRRRRLLLL(CRRRRC) 3.999777 58.715-58.700
60 7 RRRRRL _ 3.999824 55.787

61 14* RRRRRLRLLLLLR({CRRRRRLC) 3.999 865 55.675

62 6 RRRRR _ 3.999901 52.459-52.455
63 12* RRRRRRLLLLL(CRRRRRC) 3.999975 52.245-52.248
64 8 RRRRRRL 3.9999804 50.3240-50.3038
65 7 RRRRRR _ 3.9999889 48.1194-48.1181
66 14* RRRRRRRLLLLLL(CRRRRRRC) 3.9999972 48.0271-48.0259
67 9 RRRRRRRL 3.9999978 46.668 3

the reasons, a two-dimensional representation of symbolic dynamics for the two-dimen-
sional map F in Z is needed. We will continue this discussion in Section 5.2.

Before ending this section, we compare briefly our symbols with Sparrow’s in [3]. Our
periodic orbit R" corresponds to x"y in Sparrow’s notation; a symmetric orbit R"”' L""!
corresponds to x"y". The letter M may represent either x or y. Using the symbolic system
of Sparrow, sometimes one can not tell whether a periodic orbit is symmetric or
asymmmetric from the word. With one additional letter, it is possible to explore more
subtle properties such as ordering of symbolic sequences and symmetry breakings. In fact,
Sparrow was not concerned with the construction of a symbolic dynamics with its ordering
rules, admissibility conditions and other consequences.

4. SYMBOLIC DYNAMICS OF A TWO-DIMENSIONAL ANTISYMMETRIC CUBIC MAP

In order to prepare for the study of the Lorenz equations, we consider a two-dimensional
antisymmetric cubic map [28]:
3
Xpe1 = Ax, + (1 — Ax, + by,, (10)
Yne1 = X
and its symbolic dynamics.

It is well-known that a good partition is crucial for the construction of symbolic
dynamics. In one-dimensional maps the generating partitions are determined by critical
points. For two-dimensional maps, in order to partition the phase space one-dimensional
curves must be used. For the Hénon map, P. Grassberger and H. Kantz conjectured that
the line, obtained by connecting all ‘primary’ tangencies between the stable and unstable
manifolds, leads to a generating partition [9]. A natural extension of Grassberger and
Kantz’s idea is to invoke tangencies between the most stable manifold (MSM) and the
backward most stable manifold (BMSM) [29, 30]. A MSM is a submanifold in the basin of
an attractor such that all the points on this submanifold will converge to a single point with
the highest possible exponential rate (i.e. the most negative Lyapunov exponent of the
attractor). Analogously, a BMSM is a submanifold in the basin of an attractor, on which all
points, iterated backward, will converge to a single point with the highest possible
exponential rate.

If one point of a MSM falls on a stable manifold of a saddle (or periodic orbit), this
MSM coincides with the stable manifold of the saddle. All stable manifolds of saddles and
periodic orbits form an invariant subset of MSM’s and all unstable manifolds of saddles
and periodic orbits form an invariant subset of BMSM’s. Consequently, all ‘primary’
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tangencies between stable and unstable manifolds is a subset of the ‘primary’ tangency set
between MSM’s and BMSM’s. Then the partition can be defined as the ‘primary’ tangency
set between MSM’s and BMSM’s. The Grassberger—Kantz construction works well when
the knowledge of partitions on the attractor is enough; when it comes to dealing with
partitions in the whole space, not only on the attractor, the above extension is useful.

Numerically, MSM and BMSM are easily calculable for two-dimensional maps. For
ODE’s like the Lorenz equations, usually it is rather difficult to calculate the tangencies
between the stable and unstable manifolds in the Poincaré sections, but the MSM may be
easier to obtain as we will see in the next section.

For the two-dimensional antisymmetric cubic map (10), the generation partition should
be a ternary one. To construct this ternary partition, we begin with the extremely
dissipative case when b — 0. In this case the MSM’s are just straight lines with x = con-
stant, except for x = +C, which are the turning points. Here C =V/(A —1)/34, and
x = *C are the two critical points of the one-dimensional cubic map (3).

In Fig. 4 we show part of the MSM’s and BMSM’s together with the attractor of the map
(10) at a = 3.4 and b = 0.001. When b — 0 the straight lines y = =C go through a set of
tangencies between MSM’s and BMSM’s, while other tangencies, seen at x = +£C are their
pre-images. The line y = C is denoted by Ce and y = —C by Ce, both being partition lines
in this limit. As b increases gradually, we can trace how the set of tangencies deviates from
the lines y = =C. Figure 5 shows the situation at a = 3.4, b = 0.25. The heavy lines are
the unstable manifolds which outline the attractor. The thin lines are part of the MSM’s.
The dotted line is the partition line Ce (the undrawn Ce is antisymmetric to Ce), which is
obtained by connecting the tangent points between MSM’s and BMSM’s. As expected, Ce
and Ce split the two-dimensional phase space into three regions.

It seems that all the tangencies of map (10) are images or pre-images of the set of

1

-4

P

Fig. 4. The most stable manifolds (thin lines), the backward most stable manifolds (dashed lines), and the

attractor (solid lines) for the two-dimensional antisymmetric cubic map (10) at a = 3.4 and b = (.001. The dotted

lines indicate C and C, which are formed by tangencies between MSM’s and BMSM’s. As b approaches 0, the
MSM’s become vertical straight lines except for segments near the turning points at x = +C.
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Fig. 5. The MSM’s and unstable manifolds for the 2D antisymmetric cubic map (10) at a = 3.4 and b = 0.25. The

heavy lines show the unstable manifolds which outline the attractor. The thin lines are part of the MSM’s. The

dashed line is the partition line C, obtained by connecting the ‘primary’ tangencies between MSM’s and BMSM'’s.
The other partition line C has not been drawn.

tangencies coming from y = +C [9]. In this paper, we call this set of tangencies the
‘primary’ set and the tangencies on this set the ‘primary’ tangencies. These ‘primary’
tangencies are consistent with the ‘principal’ tangent points at which the sum of the
curvatures of both stable and unstable manifolds is smaller than any of its images and
pre-images, as proposed by Grassberger et al. [11].

Now we can construct the symbolic dynamics for map (10) explicitly. Borrowing
notations from the one-dimensional antisymmetric cubic map (3), we assign a letter R, M,
and L, to the region above C, the region between C and C, and the region below C (see
Fig. 5), respectively. An initial point (x4, yo) generates a symbolic sequence by iterating the
map (10):

ce e Sm ot SISG ® SpS1Sy Sy . ey

where s, denotes the x-symbol of the nth image, 55 the y-symbol of the /mth preimage,
each being one of the five letters R, C, M, C, and L. The solid dot indicates the ‘present’
position, which divides the bi-infinite sequence into two semi-infinite ones: the forward
symbolic sequence (FSS)
.s()slsz » e s" DY
and the backward symbolic sequence (BSS)
. sm .« . SESO..

In this dissipative map, a FSS may correspond to many points in the phase space. These
points form a subspace, which is called a forward foliation of the phase space. Similarly, a
BSS may correspond to a backward foliation of the phase space [13]. The forward and
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backward foliations provide the means to partition the two-dimensional phase space
by one-dimensional curves. On each set of these curves the dynamics corresponds
to a one-dimensional map. The original two-dimensional map is decomposed into two
coupled one-dimensional maps. Thus a substantial part of symbolic dynamics of one-dimen-
sional maps may be transplanted to the two-dimensional case.

In fact, the forward and backward foliations are part of the MSM’s and BMSM’s. Since
all the points on an MSM will converge to a single point, all the points in phase space
sharing the same forward sequence must fall on the same MSM. Analogously, all the points
in phase space sharing the same backward sequence must fall on the same BMSM. Thus
the MSM’s and BMSM’s provide a way to trace the points with the same forward or
backward symbolic sequence in the phase space. Each backward foliation is cut by many
forward foliations. All points on a backward foliation share the same backward symbolic
sequence. The forward symbolic sequences on one and the same backward foliation are
different; they correspond to the FSS of the one-dimensional map (3). Assuming that the
ordering rules of the FSS on a backward foliation are the same as that for the
one-dimensional limit (3), we have

‘EMR"'>.EMM"’>‘EML-..,
.OMR"'<.OMM"‘<.OML...,

where Ej (Oy) represents the common leading string, containing an even (odd) number of
letter M. According to these rules, the greatest FSS is e R*, while the smallest is ¢ L™

Analogously, each forward foliation is cut by many backward foliations and corresponds
to another one-dimensional map. The ordering rules of the BSS on a forward foliation are
defined as

(11)

v+ RE;g® >+ MEz® > -+ LE, e,

(12)
«+ - ROpge < -+ MOyge < -+ LO;ge.

The notation E;; (O;r) now represents the common leading string with the total number
of letters L and/or R being even (odd). The greatest BSS is (LR)”s, and the smallest
is (RL)e.

In Table 3, we list the maximal and minimal FSS or BSS with a leading R, M, or L.

These ordering rules for FSS and BSS have a clear geometrical background. For each
one-dimensional forward (or backward) foliation which is topologically equal to a straight
line segment, we can always define the order referring to the natural order on a straight
line and then the ordering rules can be defined as for one-dimensional maps. Numerically
we find the ordering rules for the forward and backward foliation is just the same as that of
the one-dimensional map (3).

Recently, we have considered a piecewise linear two-dimensional antisymmetric map

Xns1 = Bn + €nXn + byn’

(13)
Yn+1 = Xps
Table 3. The maximal and minimal FSS and BSS with a leading R, M or L
FSS BSS
Leading letter L M R L M R
Minimal word oL” ® MR* ®RL*® (RL)~e (RLY*Me (LR)*Re

Maximal word ®LR* oML*™ ®R* (RL)*Le (LR)*Le (LR)*e
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8, =0, €, = ——, Ix,| = C.
c

In these equations ¢, d, b are parameters with their values all between 0 and 1, and
sgn (x,) denotes the sign of x,,.

1 x>0,
sgn(x) =10 if x =0,
-1 x <0.

This map possesses the same antisymmetry as map (10); both maps (10) and (13) consist
of three monotonic branches when b approaches 0. For this piecewise linear map, we can
define an ordering rule for the forward and backward sequences by referring to left or
right, up or down of the corresponding foliation explicitly. These turn out to be the same
as the ordering rule defined above for map (10).

It is more convenient to introduce a metric representation [10] for the FSS and BSS. We
define a real number « for the FSS and a number f for BSS as follows:

a=Su3’,  B=3Sv37, (14)
i=1 i=1

where

0 i L, i R’
w =11 for [[pf=1 and s;,={M, orfor [[pf=-1 and s ={M,
2 k=1 R, k=1 L

’

0 i L7 i R’
v; =41 for pr =1 and s; =M, orfor pr =—-1 and s; =M,
2 k=1 R, k=1 L.

Here p,f is the parity of the kth letter in a FSS and pf —that of the kth letter in a BSS:

e O e s UL it
According to these definitions, we have
®(*R%) = B((LR)"e) = 1,
a(eRL") = B((LR)”Re) = 2/3,
a(eML™) = B((LR)*Me) = 2/3,
a(eMR*) = B((RL)*Me) = 1/3,
a(e LR*) = B((RL)” Le) = 1/3,
a(e L®) = B((RL)"e) = 0.

In this metric representation, any semi-infinite sequence corresponds to a real number
between zero and one. The order for the forward words and the backward words becomes

(15)
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the natural order for o and f, respectively. A bi-infinite symbolic sequence now
corresponds to a point in a unit square of the (a, B8)-plane, which is called the symbolic
plane. In this plane, backward and forward foliations become vertical and horizontal lines.

So far we have not mentioned ¢C and eC. The metric representation for eC lies
between eM and eR. Since oM < eR, we define eM <eC <eR. Now eRL™ is the
minimal word for all FSS with a leading R and e ML" is the maximal word for all FSS with
a leading M, see Table 3. Since a(eRL*) = a(e ML") = 2/3 and C is included in between
eRL” and eML™, it follows that a(eC) must equal to 2/3. Therefore, if there is a C in a
FSS, we may replace it by either ML® or RL”. Analogously, eL <eC <eM and oC is
included in between ¢ LR™ and e MR, therefore a(eC) = 1/3. As long as a C appears in a
FSS, it may be replaced by either LR™ or MR”. In a BSS, a letter C may be substituted
by either (LR)*R or (LR)*M, and a C by either (RL)*M or (RL)*L.

Having defined the ordering rules for FSS on each backward foliation and that for BSS
on each forward foliation, we are in a position to formulate the admissibility conditions for
symbolic sequences. Consider a forward foliation eJ, which crosses the partition C at P.
Denoting the backward symbolic sequence from P by ICe, the two symbolic sequences
from the points, infinitesimally shifted from P, are IRe and ILe. From our knowledge of
the one-dimensional map (3), there are no other words admissible between the words IRe
and ILe, except for the word ICe. In the symbolic plane, these forbidden words
correspond to a vertical line segment from [a(eJ), S(ILe)] to [a(eJ), B(IRe)]. Consider all
the points on the lines Ce and Ce one by one, we can get a series of such forbidden
vertical line segments in the symbolic plane. All the forbidden vertical lines form a
forbidden area, called the fundamental forbidden zone (FFZ) [13].

In Fig. 6, we present the the FFZ (empty box) for the map (10) for parameters a = 3.4
and b =0.25, where 800 points of Ce and Ce are taken, in which we find the tangent
points for the attractor are of minor importance, and at each point forward and backward
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Fig. 6. 60000 points, generated by real orbits in the 2D antisymmetric map at a = 3.4 and b = 0.25, are shown
together with the fundamental forbidden zone (empty part) in the symbolic plane.



232 HAI-PING FANG and BAI-LIN HAO

sequences of length 20 are generated. The solid lines are the boarder between admissible
and inadmissible words in the symbolic plane (the ‘pruning front’ according to [10]). Owing
to the antisymmetry of the map the pruning front is symmetric with respect to the center
(1/2, 1/2) of the symbolic plane.

In a given bi-infinite symbolic sequence - - - sisg ® s¢5; . . ., after k forward or backward
iterations, the ‘present’ dot e shifts to the right or to the left by k symbols. If the unshifted
word corresponds to a real orbit of the map (10), all its shifts must never fall into the FFZ.
This statement may be taken as the admissibility condition for a word: a bi-infinite
symbolic sequence is admissible if and only if all its shifts never fall inside the FFZ.

In addition, from the antisymmetry of the map (10), it is easy to see that if a word P is
admissible (forbidden), so is its conjugate P; the conjugate P is obtained from P by
interchanging L and R, while leaving M unchanged.

To check the above admissibility conditions, we picked up 60,000 points randomly in the
region x € [-1,1] and y € [~1, 1] and calculated the («, )-values for orbits starting from
these points which are also shown in Fig. 6. Indeed, no points are contained in the FFZ
although many points are very close to the pruning front.

From the admissibility conditions we can enumerate all the admissible words. We list all
the primitive admissible words, i.e. those that are not repetitions of a shorter string, up to
period 8 in Table 4.

5. LORENZ EQUATIONS IN LIGHT OF SYMBOLIC DYNAMICS OF TWO-DIMENSIONAL
MAPS

Now we come to the main body of this pape. Our basic goal is to construct a symbolic
dynamics for the Lorenz map F. Although it is approximate, it works well for all practical
purposes for most of the parameter r range. This is done in Section 5.2, after introducing
the extended geometric Lorenz map G in Section 5.1. In Section 5.3 we show how to
predict new periodic orbits in the Lorenz equations by using the symbolic dynamics. The
last Section 5.4 furnishes a qualitative discussion of the relation between the extended
geometric Lorenz map and the geometric Lorenz attractor.

5.1. The extended geometric Lorenz attractor

Recall our description of the Lorenz map F in Section 1. We take, for example, r = 110.
In the ‘rectangle’ = contained in the plane z = r — 1, the attractor and the most stable

Table 4. Admissible primitive periodic sequences up to period 8 in the 2D map (10) at
a=3.4, b=0.25. A letter X stands for L or M. Only non-repeating strings are given
and the conjugate words are not listed

Period Allowed sequence Period Allowed sequence
1 X 7 RMMMLRX

2 RX 8 RRLRMMRX
4 RMRL 8 RMRLRMRM
5 RMMRX 8 RMMMRMRX
6 RMRLRX 8 RMMLRMRX
6 RMMMRX 8 RMRLRLRX

6 RMMLRX 8 RMMMRLRX
7 RMMRMRX 8 RMMMMMRX
7 RMMRLRX 8 RMMMMLRX
7 RMMMMRX 8 RMMLRLRX
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manifolds are presented in Fig. 7. Since the eigenvalues of the two equilibrium points g~
and g* are complex in this plane, we have to introduce a separating line D to cut the
spiraling most stable manifolds as the dotted line shows in Fig. 7.

To derive the extended geometric Lorenz map G in X from the actual two-dimensional
Lorenz map F, we make the following five additional geometric assumptions.

Assumption 1. The attractor, i.e. the set of accumulation points of the map when ¢ — o,
is composed of two one-dimensional curves, as shown in Fig. 8. Due to strong dissipation,
the attractor for the Lorenz map in X has a very narrow width. Its structure, transversal to
the one-dimensional curves, can be seen only at greater magnification (cf. Fig. 7). The
attractor of the extended geometric Lorenz map G is the extremely dissipative limit of that
of the Lorenz map F.

Assumption2. There exists a set of most stable manifolds in =, as shown in Fig. 8. Then
almost all the points in the plane will be attracted to the attractor along the most stable
manifolds with the rate of the most negative Lyapunov exponent of the attractor. This also
opens up the possibility to give a two-dimensional representation of the symbolic dynamics
for this map. Since the smallest Lyapunov exponent for the dissipative dynamical system is
always negative, the MSM’s do exist in Z for the Lorenz equations.

We emphasize that the MSM’s, shown in Fig. 7, are actual numerical results for the
Lorenz equations, while those in Fig. 8 are schematic drawings to fix the idea of our
extended geometric Lorenz attractor.

60

-17.127 0 17.127

Fig. 7. The MSM’s and the attractor of the Lorenz equations at r = 110. The heavy lines with hooks are the

attractor, which coincides with part of the BMSM’s. The dashed lines are part of MSM’s. The solid dots, marked

by C and C, are primary tangencies between MSM’s and BMSM’s. The dotted lines, which represent the ternary

partition C and C, and the separating line D, which connects the two equilibrium points ¢~ and g*, divide the
phase space into four parts, denoted by L, R, M, and M,.
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~-17.127 0 17.127

Fig. 8. The MSM’s and the attractor for the extended geometric Lorenz map. The lines and points have the same
meaning as in Fig. 7.

Assumption3. There are tangencies between the curves of the attractor and the MSM’s.
We take C and C to be the ‘primary’ tangent points, as shown in Fig. 8. The ternary
partition lines are shown as dashed lines, which are also denoted by C and C. It is essential
that the partition line goes through the points C and C. The precise location of partition
lines in other parts of the phase plane may be determined by tangent points between
MSM’s and BMSM’s, but is not needed here. Therefore, the dashed lines in Fig. 8 are
drawn somewhat arbitrarily when far from C and C.

Assumption 4.  All points of the interior of 2 do return to £ and the return map G can be
well defined (cf. property (3) below).

Assumption 5. The map G is antisymmetric with respect to the origin (0, 0).

These ‘geometric’ assumptions can be verified numerically. In Section 5.2, we will give a
symbolic description for the actual Lorenz map F. Then we compare the topology of the
map F with the geometric map G. We will see, for most of the parameters, the map F can
be described by G to very high accuracy.

From the first three assumptions, Z is divided into four regions by the separating line D
and the ternary partition lines C and C. We mark them by L, M,;, M, and R as shown in
Fig. 8. Each region is filled by a family of curves from the MSM’s. Introducing a system of
coordinates (#, v) on G such that the MSM’s are given by u = constant. Here we do not
assume the existence of the BMSM’s. If the BMSM’s exist, they are given by v = constant.
Anyway, the attractor can be defined as v = ¢, ¢ being a constant. In fact, the fourth
assumption includes two parts: one is the iteration property of u as defined in point (3)
below; the other is that all the points in region M, will return to the hook in the right
branch and all the points in region M, to the hook in the left branch of the attractor.
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Defining the right one of the two MSM’s to be greater and R > M,> M, > L, we can
describe the extended geometric Lorenz map analytically as follows.

1. There exists a ternary partition C, C, and a separating line D to divide the plane Z
into four parts. In each part the curves of MSM are given by u = constant.

2. There exist functions f and g such that G has the form G(u,v) = (f(u), g(u, v)) for
u#0and G(—u, ~v) = —G(u, v).

3. f'(u) >0 in regions R and L; f'(u) <0 in regions M and M,; |f'(u)| —> » as u— 0.

For the attractor of the extended geometric Lorenz map G, v=c. The map
G(u, v) = (f(u), g(u, v)) is completely determined by f(u). In what follows we concentrate
on the study of the dynamics of the map f(u).

In Fig. 9 we present a scheme for f(u) which is a one-dimensional map with a
discontinuity at « = 0. For this one-dimensional map, it is easy to construct the symbolic
dynamics explicitly. The ordering rules are

EMR"‘>EMM2"'>EMMl"'>EML-"’
OyR -+ - < OyM, - < OyM; -+ < OyL ...,

where Ey (Oy) represents a common leading string with an even (odd) number of letter
M, and/or M,. According to these rules, the greatest word is R”, while the smallest is L.

This ordering rule provides a criterion to exclude all illegal words.

We denote by K, and K, the kneading sequences, i.e. the words coming from the first
iterate of the greatest point C and that from the smallest point C. The antisymmetry of the
map yields K, = K P K ¢ being the conjugate of K, obtained by interchanging L’s and R’s,
but leaving M’s unchanged. Analogously, K; denotes the minimal word iterated from
region M, and K ,—the maximal word iterated from region M,. Using these notations, the

(16)

flu)

M,

u

Fig. 9. A sketch of the map f(u). In the figure L, M;, M,, and R denote the subintervals, formed by the two
critical points C, C, and the discontinuity point u = 0.
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admissibility conditions for symbolic sequences in the extended geometric Lorenz map G
are formulated as follows: a word P is admissible if all its shifts satisfy the conditions

$(P) < K,,
Kp <M(P)< K.,
K, < My(P)< Kp,
K, <R(P),

where £(P), M,(P), M,(P), and R(P) are defined in the same way as in (8).

In fact, the symbolic representation of this extended geometric Lorenz map can be
constructed by using only three letters. Due to Assumption 4, all points in region M,
return to the hook in the right branch and all points in region M,—to the hook in the left
branch of the attractor, as shown in Fig. 8. In terms of symbolic dynamics, a letter M, will
always be followed by a letter R, and a letter M, by L. It causes no confusion to mark
both M; and M, by a letter M. Once a substring MR appears, it must be MR.
Analogously, ML always represents M,L. In this way, the ordering rule for symbolic
sequences in the extended geometric Lorenz map G reduces to that for the one-dimen-
sional antisymmetric map, i.e. (6).

However, the admissibility conditions for map G differs from that for map (3) due to the
presence of a discontinuity. A word P is admissible in the extended geometric Lorenz map
G if it satisfies the following conditions:

#(P) < K,
K, < M(P) < K,, or K, <MP)<K,, (18)
K, < R(P).

In addition, if K, > C holds, which would imply that no substring MM is admissible.

Now we compare the symbolic dynamics of this extended geometric Lorenz map G with
that of the one-dimensional antisymmetric map (3). The ordering rules and admissibility
conditions for the one-dimensional antisymmetric cubic map (3) have been given in Section
2, see (6) and (9).

If we ignore the separating line D, i.e. taking K, = K, = M~, the admissibility
conditions (18) for the extended geometric Lorenz map G would reduce to (9). Therefore,
symbolic sequences in the extended geometric Lorenz map is a subset of that of the
one-dimensional antisymmetric cubic map (3). Comparing directly Fig. 9 of map f(u) with
Fig. 1 of map (3), we come to the same conclusion.

In the beginning of this section, we have extracted the extended geometric Lorenz map
G from the real Lorenz map F in Z by making a few geometric assumptions. We expect
that the behaviour of the map G is topologically similar to that of the map F. We do find
that the real Lorenz map F can be described by this extended geometric Lorenz map G for
most of the parameter ranges. This will be presented in the next section. In this way, the
numerical result of Section 2, namely, periodic windows in the Lorenz equations are well
described by the one-dimensional antisymmetric cubic map with only one exception, can be
better understood.

a7

5.2. Symbolic dynamics for the Lorenz map F

Now we construct the symbolic dynamics for the Lorenz map F explicitly. We take
r =110 and r = 191.99 as two contrasting examples. Numerical calculation shows that the
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r = 110 case can be taken as a prototype for the Lorenz map F for most of the parameters
except for r close to 191.985, when we encounter the non-cubic word.

The attractor, the most stable manifold, and the separating line D at r = 110 have been
shown in Fig. 7. A closer examination of the attractor shows that it has a very complicated
structure that can not be described as two one-dimensional curves. In Fig. 10, part of the
attractor is shown enlarged. Consequently, there are infinitely many primary tangent points
in the attractor. According to the definition, given in Section 4, the partition line should go
through all these tangent points, which is a subset of tangencies between MSM’s and
BMSM’s of the map F.

The antisymmetry of the map F calls for a ternary partition. In practice, we only
determine the partition C: C can be obtained from the antisymmetry. We record a tangent
point if at that point the angle between the tangent vectors of the MSM and the BMSM is
smaller than a preset tolerance € = 107>, From about 100,000 points in the attractor, we
obtained 19 such points which are shown in Fig. 10 as crosses. The ternary partition is then
determined. As in the extended geometric Lorenz attractor, we label by R the region
bounded by D and C, by L the region bounded by D and C, and by M the regions above
C and below C. The forward and backward words for these 19 points are then calculated.
Taking into account the fact that the map shares the same discrete symmetry as the
two-dimensional antisymmetric cubic map (10), the ordering rules for these symbolic
sequences are assumed to be the same as for map (10). The metric representation of
symbolic sequences is defined by (14). By computing the o and f§ values for the points on
C, the ‘pruning front’ and the fundamental forbidden zone (FFZ) are obtained and shown
in Fig. 11.

It follows from the discussion of Section 4 that all admissible sequences and their shifts
will never fall into the FFZ. To check this condition, the («, 8)-values for 14,162 points in

30.3

Y

29 L
“4.3 “3.9

T

Fig. 10. Part of the attractor around C for the Lorenz equations in 2, at r = 110. The crosses are primary tangent
points.
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Fig. 11. The symbolic plane of the Lorenz map at r = 110. All points represent real orbits. Only one point falls
into the FFZ.

the attractor are calculated and shown in Fig. 11. Except for one point, all other points do
keep themselves out of the FFZ. The exceptional point will be discussed after we construct
the symbolic dynamics for the map F at r =191.99. Therefore, excluding these rare
exceptions, we may say that the admissibility condition for a bi-infinite symbolic sequence
P of the Lorenz map F at r = 110 consists of the fact that its shifts and their conjugates
never fall into the FFZ and never satisfy

Kp < M(Forw (P)) < Kp, (19)

where Forw (P) represents the forward part of all shifts of P and their conjugates, and Kj
is the same as that defined in the extended geometric Lorenz map G, i.e. the maximum
word from the topmost point of the left branch in Fig. 8.

Now we compare the symbolic dynamic of the two-dimensional map F with the extended
geometric Lorenz map G. Figure 12 is a blow-up of the symbolic plane, i.e. Fig. 11, along
the B=1/3 line for & € [@pin, Fmax], Where @, = 0.92215072 and a,, = 0.92215080. This
was calculated using all the points on the partition line C. We can get a sufficient condition
for a symbolic sequence of map F to be admissible by only considering its forward
sequence: a bi-infinite symbolic sequence is admissible if all a-values of its shifts and their
conjugates are never greater than a;, and never satisfy (19); a bi-infinite symbolic
sequence is forbidden if one of the a-values of its shifts and their conjugates is greater than
a’max-

The range for the @ values on C is 8= tpay — Fmin = %1075, Since log; 67! = 14.87, all
the first fourteen letters for these forward symbolic sequences turn out to be the same,
namely, RRLRRLLRILRLLRL. Any unstable periodic orbit with length n < 15 can not tell
the difference between a,,, and a,,, [32]. Consequently, the admissibility condition for an
unstable periodic orbits with length »n <15 is: that a bi-infinite symbolic sequence P is
admissible if and only if it satisfies
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0
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Fig. 12. Blow-up of part of the FFZ, shown in Fig. 11.

¥(Forw (P)) < K,,
Kp < M(Forw (P)) < K,), or K, < M(Forw(P)) < K, (20)
K, < ®(Forw (P)).

with K, = (RRLRRLLRLRLLRL)”. This is just the admissibility condition (18) for the
extended geometric Lorenz map G. Thus, the topology of the Lorenz map at r = 110 is the
same as that of the extended geometric Lorenz map G when we only consider periodic
orbits with length n < 15. The Lorenz map F can be described by the extended geometric
Lorenz map G to very high accuracy.

Now we consider the exceptional case when there is a qualitative difference between the
Lorenz map F and the extended geometric Lorenz map . The only such cases occur near
r = 191.99. The attractor, the most stable manifold, the separating line D, and the ternary
partitions C and C at r = 191.99 are shown in Fig. 13. Unlike the r = 110 case, there are
primary tangent points in the hooks so that the partition C passes through these points. We
compute the & and B values for points on the partition line C, in the same way as we
did above.

There are two series of ‘pruning’ fronts, if we still keep the word ‘pruning’. One comes
from points on the main branch of the attractor as the case for r = 110. This front is shown
by the dashed line in Fig. 14. The other comes from the partition points located in the
hook; this is shown by the solid line in Fig. 14. In the lower right part of the symbolic
plane the second ‘pruning’ front is located to the right of the first one. The fundamental
forbidden zone is defined as the region bounded by this series of ‘pruning’ fronts, and the
lines @ =1, B =0, and B =2/3. A real trajectory and its conjugates will never fall into the
FFZ. This has been checked directly by calculating the («, ) values for 10,582 points in
the attractor. These points are also shown in Fig. 14. Indeed, no points fall into the FFZ.
It is clear that some points between the first set of ‘pruning’ front (dashed line) and the
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Fig. 13. The MSM’s and the attractor of the Lorenz equations in , at r = 191.99. The lines and points have the
same meaning as in Fig. 7.
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Fig. 14. The symbolic plane of the Lorenz map at r = 191.99. All points represent real orbits. The dashed lines
show the ‘pruning front’, determined from partition points on the main branch of the attractor; the solid lines
show it from the hook.
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second set (solid line) may be forbidden by the first set. Thus, no sufficient admissibility
conditions can be formulated.

In this case, the symbolic dynamic is not well constructed since the admissibility
conditions can not be well defined. Therefore, the topology of F can not be correctly
described by the one-dimensional antisymmetric cubic map (3). By comparing the symbolic
dynamics for this case and the r = 110 case, it seems that the appearance of the primary
tangent points in the hooks accounts for the difference. In fact, though the MSM’s of the
Lorenz map F can be well constructed and ordered, the BMSM’s can not be well defined
and ordered which affects the ordering of the backward symbolic sequences. Fortunately,
numerical calculation shows that the BMSM’s on the main branches of the attractor is
ordered rather well. Thus the symbolic dynamics for the Lorenz map F can be well
constructed when there are no primary tangent points in the hooks, i.e. when r is far from
191.99.

In fact, primary tangent points do exist in the hooks even for r different from 191.99. In
the r =110 case, we did have seen one point which falls into the FFZ (see Fig. 11).
However, the probability for a point coming close to these primary tangent points in the
hooks is very low and is estimated to be about 1/14,000 at r = 110. Consequently, the
symbolic dynamics, constructed above, is capable to reflect the topology of the Lorenz map
F very well. For other parameters, it can be verified numerically that the probability for a
point coming close to primary tangent points in the hooks is also very low, except for r
close to 191.99. Therefore, symbolic dynamics for the Lorenz map F can be well
constructed for most of the parameters and F itself can be described by the extended
geometric Lorenz map G to high accuracy.

5.3. Predicting periodic windows of the Lorenz equations

In order to demonstrate the power of the symbolic dynamics for the two-dimensional
Lorenz map F and for the map G, we show how to predict new periodic windows in the
Lorenz equations. However, it is tedious to work out the two-dimensional partitions for the
map F, since one has to consider the backward sequences which always cause numerical
difficulty of divergence. Fortunately, the Lorenz map F can be described by the extended
geometric Lorenz map G rather well for most of the parameters and symbolic dynamics for
map G is much simpler in the sense that only forward sequences are needed. Moreover, on
the attractor, the map G is topologically equal to the map f(u), so often one can deal with
this one-dimensional case only. The ordering rules and admissibility conditions for the map
f(u) has already been given in (6) and (18).

The two symbolic sequences K, and K, determine the symbolic dynamics of the map
f(u) completely. When Kp = K, = M™, f(u) reduces to map (3). In what follows, we
examine all symbolic sequences with length less than 7 to see which orbit should exist in
the map f(u).

Since the symbolic sequence in the map f(u) is a subset of that of the one-dimensional
antisymmetric cubic map (3), only symbolic sequences listed in Table 1 have to be
considered. The condition Kj, > C makes all words containing a substring MM forbidden.
This rules out 27 words and only leaves 23 that may be admissible in map f(u). From these
23 words, only the following seven have not appeared in Table 2.

We check these seven words one by one. From Table 2 and the A value of the seven
words, the word RRLMRC is located between the words RRLMRMLLRMLC and
RRLMLC, corresponding to r = 143.4 and 136.8, respectively. In the same way, we get
possible r-ranges for other words in Table 5. Between r = 143.4 and 136.8, K, =RK,, so
the word RRLMRC should exist in the Lorenz equations. Though we have not found the



242 HAI-PING FANG and BAI-LIN HAO

stable periodic orbit RRLMRC, we did obtain the unstable one at r = 141.247-141.249 by
careful searching. Similarly, there is no rule to forbid the word RRRLRC and we have
located it at r = 76.818-76.822. For the other five words, we have to determine K, for
each r-value carefully. Numerically, we find K, by iterating the point with the greatest
y-value in more than 10,000 points in the attractor in Z. The result is listed in Table 6 in
which we only present the first six letters for each Kj. In the range r = 94.554-99.275, K
always begins with RR which make the substrings MRC, MLC, and MLRC forbidden.
Thus the words RRMRC, RRMLC, and RRMLRC would never appear in the Lorenz
equations. Analogously, from K, in Table 6 we can draw the conclusion that the other two
words RRRMRC and RRRMRC are not admissible in the Lorenz equations.

In Table 6, as r decreases from r = 130, the difference between K, and RK increases
rapidly. On the other hand, up to r =60, Kp~K,. At r=40 K, =RYLRLRR ...,
which indicates that there is no stable period orbit with a period less than 10 for r < 40.
We conjecture that when r <40, K, < K,, no superstable periodic orbits may exist, though
some periodic orbits with length greater than 10 can be stable. While r is small enough
(say, r <30.1), all the contracting part of the attractor is ‘eaten’ by Kj, with K, > K,. No
stable periodic orbits can be found and the Lorenz map F in the attractor is ‘sufficiently’
expanding. This is just the ‘geometric Lorenz attractor’ suggested by Guckenheimer and
Williams [22, 21].

It should be noted that for r close to 191.99, the extended geometric Lorenz map G can
not describe the Lorenz map F properly. The symbolic dynamics for the map F can not be
well constructed. Many points fall into the region to the right of the dashed line in Fig. 14,
which is the ‘pruning’ front determined by tangent points on the main branch of the

Table 5. Seven words that may be admissible but not listed in Table 2

No. Period Word Possible r range Existence

1 6 RRLMR 136.818-143.322 141.247-141.249
2 5 RRMR 94.554-99.275 forbidden by Kp
3 5 RRML 94.554-99.275 forbidden by Kp
4 6 RRMLR 94.554-99.275 forbidden by Kp
5 6 RRRLR 76.713-82.040 76.818-76.822

6 6 RRRMR 64.898-69.724 forbidden by Kp
7 6 RRRML 64.898-69.724 forbidden by Kp

Table 6. The K, for different r-value for the Lorenz equations in 2,

No. r Kp RK; K,

1 209.5 RLRCRM RIMLRL RMRLR

2 199 RLCLML RLMLR RMRLM

3 192-130 =RK; RK; K,

4 120 RLMRR RLRLR RRLRLR

5 110 RLRMRR RLLRLL RRLRRL

6 9 RRLLCL RLLMLL RRMRRL

7 98 RRLLML RLLMLL RRMRRL

8 97 RRLLRM RLILMLL RRMRRL

9 96 RRLLRL RLLMRR RRMLLC
10 95 RRLLRL RLLMRR RRMLLC
11 80 RRMRRR RLLLRL RRRLRL
12 70 RRRLRL RLLLRR RRRRLL
13 60 RRRRLRR RLLLLRL RRRRLRR
14 50 ROLR RLSR RSLR

15 40 RILR RLYR RIOLR
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attractor. These points do not obey the admissibility conditions for the map G. We do find
a ‘non-cubic’c word RMLRMLMRLC for the stable periodic orbit in the r range
191.985-191.982.

5.4. Relation between the extended geometric Lorenz map G and the ‘geometric Lorenz
attractor’

According to Guckenheimer and Holmes [22], the geometric Lorenz attractor is defined
in T for 0 =10, B=8/3, and r =~ 28. Based on an examination of the return map F, four
additional assumptions are made. These assumptions can be expressed analytically. There
is a system of coordinate, (u,, v,), on Z. The curve u, = constant is part of a strong stable
foliation defined in a neighborhood of the attractor. This strong stable foliation is the MSM
in our language. Then the return map G, has the following properties.

1. The curves of MSM’s are given by u, = constant.

2. There are functions f, and g, such that G, has the form G,(u, v) = (f(u,), gg(ug, v,))
for u, # 0 and G,(—u,, —v,) = — G,(ug, v,).

3. fi(ug) > V2 for u, # 0 and fy(u,) > = as u;— 0.

4. 0<3g,/ov, <C <1 for u, #0 and 3g, — 0 as u, — 0.

In Fig. 15, a scheme of the one-dimensional map f, is shown. Denoting by R and L the
regions to the right and to the left of the separating line D, the ordering rules can be
written down as

PL---<PR... 1)

where P is an arbitrary string made of R and L, and the admissibility conditions for a
word P which corresponds to a real trajectory in map G, read [33]

fg(ug)

Uy

Fig. 15. The 1D map f,(u,), inferred from the Lorenz map.
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E(P) < Kp,
Kp < R(P).

The extended geometric Lorenz map G is defined in X for r big enough, say, r > 46, for
which stable periodic orbits may appear at some parameters. The main difference between
the assumptions for the extended geometric Lorenz map G and the geometric Lorenz map
G, is property (3). The return map G, is ‘sufficiently’ expanding (fy(u,) > V/2) in the
direction transverse to the MSM’s, so that there are no tangent points in the attractor.

Our extended geometric Lorenz map G possesses tangencies between the MSM’s and the
BMSM’s in the attractor. At the primary tangency C and C, f'(u) =0 which allows the
existence of stable periodic orbits. If we take the limit that K, > K,, the M part
disappears. In this limit, the ordering rules and the the admissibility conditions for the
symbolic sequences in map G are the same as that of the geometric Lorenz map.
Furthermore, if K, is sufficiently large that only the ‘sufficiently’ expanding part
(f'(u) > V/2) is left, f(u) reduces to f,(u,). Consequently, the geometric Lorenz attractor
of Williams et al. is the limit of our extended geometric Lorenz attractor for K, sufficiently
large with Kj, > K,. At about r =30, K, > K,. Below r =30, the extended geometric
Lorenz attractor becomes the geometric Lorenz attractor. This is the reason why we call
the map G the ‘extended’ geometric Lorenz map.

(22)

6. DISCUSSION

Numerical investigation of many ordinary differential equations [34-39] as well as some
partial differential equations [40-42], has revealed some similarity of the bifurcation
structure with that of low-dimensional mappings. This has stimulated the application of
symbolic dynamics of one-dimensional maps to the study of differential equations. The
physical reason for low-dimensional symbolic dynamics working so well is of course the
presence of dissipation, which causes the shrinking of phase space volume. Our work shows
also the importance of symmetry in constructing symbolic dynamics for a physical system.

Recently, S. Smale summarized 10 great and unsolved problems in dynamical system
theory [43], the first problem being the dynamics of the Lorenz equations (1), with o = 10,
r=28, and b =8/3, described by the ‘geometric Lorenz attractor’ of Williams
et al. Our results push the problem into a much wider, obviously nonhyperbolic, range of
parameter r. It seems that there is good hope to apply, rigorously or approximately, the
method of symbolic dynamics to some nonhyperbolic systems and to add this method to the
arsenal of practitioners in nonlinear dynamics.

Guckenheimer and Holmes indicated in their book [22] that nonhyperbolic limit sets are
often encountered in examples of practical importance: “One would like to study their
symbolic dynamics, but this has not been done in a satisfactory or systematic manner,
except in the special case of mappings defined on the line.” Our results on the Lorenz
equations, though not being claimed to be satisfactory, do present a more or less systematic
attempt in that direction.
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