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Abstract. The problem of counting the number of types of periodic orbits in continuous maps of
the interval has been solved completely by using several different methods. We summarize the
results without going into details which have been published elsewhere [3–5].
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1. Introduction

In non-linear dynamical systems periodic orbits, stable as well as unstable, have a close
relation with chaotic behavior. On the one hand, when a parameter is tuned, chaotic
regime is usually reached via a sequence of stable periodic events, the period-doubling
cascade being a prominent example. On the other, a chaotic attractor that appears at
a certain parameter contains an infinite number of unstable periodic orbits. The type
and number of periodic orbits are topological invariants and thus may be used to char-
acterize the attractors. Moreover, higher-dimensional dissipative systems may have the
same kind of attractors as low-dimensional ones. In particular, the number of periodic
orbits in one-dimensional maps may be instructive for the study of higher-dimensional
systems.

The number of periodic orbits in unimodal maps has been known for some time [6].
There has been some confusion and clarification on the number of periods in cubic maps
[4, 7, 9, 13, 14]. Counting the number of periodic orbits in maps with multiple critical
points seemed to be a quite difficult job until the realization that one has first to solve
the problem for a family of one-parameter maps and the answer to more complicated
cases is given by combinations of results of the one-parameter cases.

2. Statement of the Counting Problem

We consider a general family of continuous maps of the interval I:

fµ : I QR I S
or

xn T 1 U f V µ S xn W S x X I S
339
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Figure 1: Particular cases of an m U 6 map.

where µ denotes one or more parameters. The mapping function may have m monotone
branches or laps, separated by turning points, i.e., maxima and minima of the function.
Without loss of generality we can take the interval to be I U V 0 S 1 W . In order to obtain
general results, one has to fix the function f at the two end points of the interval:

f V 0 WEU 0 S
f V 1 WEU Y

0 S m even S
1 S m odd Z

The counting problem consists in telling the number of different types of periodic
orbits of a given length n when the parameters are allowed to change in all possible
ways that keep the map within the unit square.
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3. Summary of the Results

An m-lap continuous map has m [ 1 critical points, among which there are \m ] 2 ^ max-
ima and \?V m [ 1 W ] 2 ^ minima, where \�^ means taking the integer part. Some of these
minima or maxima or both may be bound to vary in unison, thus reducing the number
of free parameters. Figure 1 shows some particular cases of an m U 6 map. Figure 1(b)
shows a one-parameter case when all the minima are fixed at the lowest point f V x W�U 0
while all the maxima are bound to vary together. We denote the number of period n
orbits in this one-parameter map by N6 V n W . If m is odd, a one-parameter map is ob-
tained by fixing the rightmost point at f V x W�U 1. The one-parameter family of maps is
shown in Figure 2 for m U 2, 3, and 4. In general, the number of period n orbits in
such one-parameter maps is denoted by Nm V n W . The first Nm V n W are listed in Table 1 for
m U 2 to 7 and n _ 10.

It turns out that the number of periodic orbits in all other cases are given by linear
combinations of Nk V n W with k _ m Z Using various cases of the m U 6 map shown in
Figure 1 as examples, we list some results:

1. The number of periods of the one-parameter map (e) (as well as (f) and other similar
cases) is given by N6 V n W [ N4 V n W . In an m-lap map, it is given by Nm V n W [ Nm ` 2 V n W .

2. The number of periods of the map (d) is given by N6 V n W [ N2 V n W . A similar case in
general would have Nm V n W [ Nm ` 2 a 2 V n W periods.

3. The number of periods of the map (i) is twice that of (d), i.e., 2 V N6 V n W [ N2 V n WbW .
4. The number of periods of the map (c) is the sum of (b) and (d), i.e., 2N6 V n W [ N2 V n W .
5. The number of periods of the map (h) is the sum of (d) and twice of (e), i.e.,

3 V N6 V n W [ N2 V n W [ 2N4 V n WcW .
6. The number of periods of the map (g) is the sum of (d) and thrice that of (e), i.e.,

4 V N6 V n W [ N2 V n W [ 3N4 V n WcW .
7. Finally, the number of periods in the general m U 6 map (a) is 5 V N6 V n W [ N4 V n WbW . It

is V m [ 1 W V Nm V n W [ Nm ` 2 V n WcW for a general m-lap map.

If an m-lap map has k1 critical points which change independently, k2 pairs of max-
imal (or minimal) points which change simultaneously, k3 triples of maximal (or mini-
mal) points which change simultaneously, and so on, then the total number of period n
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Figure 2: The family of one-parameter maps for m U 2, 3, and 4.
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Table 1: Number of period n orbits Nm V n W for maps with m laps.

n d m 2 3 4 5 6 7

1 1 1 2 2 3 3

2 1 2 4 6 9 12

3 1 4 10 20 35 56

4 2 10 32 78 162 300

5 3 24 102 312 777 1680

6 5 60 340 1300 3885 9800

7 9 156 1170 5580 19995 58824

8 16 410 4096 24414 104976 360300

9 28 1092 14560 108500 559860 2241848

10 51 2952 52428 488280 3023307 14123760

superstable orbits is given by

N U ∑
i e 1

ki \Nm V n W [ Nm ` 2i V n W ^fS
where

k0 g k1 h 1 g k2 h 2 g k3 h 3 gAicibi+U m [ 1 S
k0 being the number of extremes fixed at the top or bottom of the unit square.

The key numbers Nm V n W may be calculated by several different methods. We list a
few.

3.1. The Number of Admissible Words in Symbolic Dynamics

One can construct the symbolic dynamics of the map and formulate the admissible
conditions for words that are allowed in the dynamics (for details see Chapter 3 of [5]).
This method also works for maps with discontinuities. A general program to perform
the job is given in Appendix A of [5]. In fact, all the results given below have been
checked against this brute force approach.

3.2. The Necklace Problem

The numbers N2 V n W are known to be given by the number of necklaces made of n beads
that come in two colors \ 6 ^ , i.e., the number of periodic sequences that are invariant
under the group Cn h S2, where Cn is the cyclic group of order n and S2 the symmetric
group of order 2. There was a misconnection of the group Cn h S3 to N3 V n W [9]. It turns
out that the general case is still given by the group Cn h S2, but it is no longer a necklace
problem. The corresponding counting formula reads:

F jm V n W�U 1
2n ∑

d k n ϕ V d W V m n
d g m

n
d W S
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Table 2: Value of m.

m even m odd

d even m m

d odd 0 1

where the sum runs over all factor d of n and ϕ V d W is the Euler function. The number m
is defined according to the parity of m and d as listed in Table 2. j

The numbers F jm V n W contain those n which are multiples of a shorter period. The
final result for Nm V n W is obtained from F jm by a Möbius transform:

Nm V n W1U ∑
d k n µ l n

d m F jm V d W S
where µ V n W is the Möbius function. We note that the above counting formula looks
much simpler than the corresponding formula for the number of periodic sequences
invariant under the group Cn h S2, given by Gilbert and Riordan [2].

3.3. Recursion Formulae

Let us denote by Pm V n W the number of period n orbits that are born in period-doubling,
i.e., pitch-fork, bifurcations, and by Mm V n W the number of period n orbits born at tan-
gent, i.e., saddle-node, bifurcations. We have by definition

Pm V 2k g 1 WnU 0 S for k o 0 S
Pm V 2k WpU Pm V k Wqg Mm V k W S for k o 1 Z

Furthermore, let
Cm V n W1r d \ 2Mm V d Wsg Pm V d W ^�Z

Then the numbers Cm V n W are given by a “balance equation”

mn U ∑
d k nCm V d Wqg s V m W S

where
s V m W1U m V mod 2 W Z

The above relations provide a recursion scheme for the calculation of Pm V n W and Mm V n W .
One can solve the last relation by using the Möbius transform to yield

Cm V n W1U ∑
d k n µ V d W m n

d [ s V m W I V n W S
where I V n W�U \ 1 ] n ^ . We see that the factor s V m W affects only the number of fixed points
when m is odd. This is solely due to the fact that for odd m, the rightmost point f V 1 WPU 1
is always a fixed point.t

We take this opportunity to correct a typesetting mistake in Table III of [10] and in Table 7.4 of [5].
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The total number of periods Nm V n W�U Pm V n Wug Mm V n W is given by a similar recursion
formula:

Nm V n W�U 1
2n ∑

d k n v µ V d W m n
d [ s V m W I V n w W S

where n w is obtained from n by decomposing the latter as

n U 2kn wxS k o 0 S n w odd Z
3.4. Finite λ Auto-Expansion of Real Numbers

Take an m-lap piecewise linear function that maps the interval V 0 S m W into itself:

f V x W<U λαix [ λβi S λ XyV 1 S m W S
where

αi U 1 S βi U 2i S for 2i _ x _ 2i g 1 S i U 0 S 1 ScZbZcZLS�\zV m [ 1 W ] 2 ^ ;
αi U [ 1 S βi U [ 2i S for 2i [ 1 _ x _ 2i S i U 1 S 2 ScZbZcZLS�\m ] 2 ^ ;

and define
Ai U 2iαi ` 1 icici α0 S i U 0 S 1 ScZbZcZ{S n [ 2 S

An ` 1 U \ 2 V n [ 1 Wqg αn ` 1̂ αn ` 2 ZcZcZ α1α0 S
we ask how many λ XDV 1 S m W would have a finite expansion

λ U n ` 1

∑
i e 0

Ai

λi S
which is a natural extension of binary expansion of real numbers. It turns out that the
number is also connected with the number of periodic orbits in the one parameter m-lap
map. This is a straightforward extension of the result by Derrida et al. [1] for m U 2.

We did not touch some other aspects of the counting problem, e.g., its relation
with the number of real roots of the equations which describe the dark lines seen in
bifurcation diagrams of the maps, or the number of saddle-nodes in forming the Smale
horseshoes [12], or the number of independent solutions of the corresponding renor-
malization group equations associated with the period-n-tupling sequences (for details
see [5]).

4. Number of Periods in Maps with Discontinuity

As there are infinitely many ways to introduce discontinuities into a one-dimensional
map, it is difficult to obtain general counting results for such maps. However, we do
have some closed results for two particular cases [11].

4.1. The Gap Map

The gap map is obtained by opening a gap at the top of a unimodal map, thus making
it a two-parameter map. It can be shown that from each periodic orbit of the unimodal
map, one gets four different periodic orbits as long as n o 3, i.e., its number of periods
is given by 4N2 V n W . For n U 1 and 2, there are 2 and 3 different periods as it can be seen
by direct inspection.
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4.2. The Lorenz-Type Map

By reversing the right branch of a unimodal map one gets the so-called Lorenz-type
map which is instructive for the understanding of the chaotic dynamics in the Lorenz
equations. Its number of periods is 2Z2 V n W for n o 2, where

Zm V n W1U ∑
d k n ϕ V d W m n

d

is the number of periodic sequences which are invariant under the cyclic group of
order n alone, as given in [2]. By inspection, one sees that there are two fixed points in
this map.

5. Discussion

We have given complete solutions of how to count the number of periods in one-
dimensional continuous maps of the interval and we have indicated partial results for a
few maps with discontinuity. However, we must admit that the problem has been made
much simpler by the way we pose it. In fact, we have been looking for periodic orbits in
the entire parameter space. As an ordering may be introduced for symbolic sequences
of any one-dimensional maps and the best way to parametrize a map with multiple crit-
ical points is to use its so-called kneading sequences [5] as parameters, one may put
all possible parameter combinations into a one-dimensional sequence and then ask how
many and what periodic orbits have appeared at a given parameter set. This turns out to
be a much more difficult problem. So far only a limited result confined to the period 3
window of unimodal maps has been known [8].
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