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A bifurcation theory and symbolic dynamics analysis of symmetry breakings and restora-
tions in antisymmetric mappings is carried out. The fact that symmetry breakings are
precursors to period-doubling happens to be a natural consequence of word ordering in
symbolic dynamics. Symbolic dynamics also provides the selection rule for such bifurcations
to occur and helps to locate the symmetry restoration point in the chaotic region. When the
inverse branches are known explicitly the analysis may be made detailed enough to determine
the bifurcation structure with high precision.

Introduction

Symmetry breaking and symmetry restoration are common phenomena in

physical systems with a certain kind of symmetry. An equation or a thermodyna-
mical potential may possess a higher symmetry, but a particular solution or an
equilibrium state may exhibit only a lower symmetry. However, all these
asymmetric solutions (or states) taken together restore the original symmetry. In
many physical systems, there exists a mechanism that connects various asymme-
tric solutions and ‘““helps” to restore the full symmetry, e.g., spin waves in a ferro-
magnet or Goldstone modes in a field theory with degenerated ground state. In
fact, the notion of symmetry breaking has been playing an increasingly important
role in understanding diverse problems ranging from continuous phase transi-
tions to the origin of the Universe.
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It is interesting to note that a simple form of symmetry breaking and
restoration appears in the bifurcation structure of many dynamical systems. It
shows clearly in the bifurcation diagram of the antisymmetric cubic map'~:

-xn-HEf(Aa xn) =sz+(1 —A)x,. (1

(For the graph of (1) see Fig. 1, for the bifurcation diagram see Fig. 2.) The exis-
tence of symmetric orbits, which first undergo symmetry-breaking bifurcation
into asymmetric orbits, and then enjoy period-doubling, has been observed in
numerical studies of many systems of ordinary*'* and partial* differential
equations as well as in laboratory experiments.'>!6 It seems that for the time being
the Lorenz model'’® is in this respect the most studied system. Since it is
invariant under the transformation x ~> —x, y —> —y, it has been associated with
symbolic dynamics of three letters and many cases of symmetry breaking have
been described explicitly in terms of symbolic sequences.'?
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Fig. 1. The antisymmetric cubic map.
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Fig. 2. Bifurcation diagram of the antisymmetric cubic map.
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Observations have led to the conjecture that symmetry breaking must precede
period-doubling, whence follows the expression “precursor”'>'? to period-
doubling or “suppression”'3!! of period-doubling by symmetry breaking, etc. The
phenomenon was correctly related to the symmetry of the governing equations,'’
and a heuristic explanation based on bifurcation theory was given in Ref. 11. The
most compiete bifurcation theory analysis applied to the Poincaré mapping of
flows appeared in Ref. 18 with the conclusion that a symmetric orbit cannot
undergo period-doubling directly except in extraordinary cases.

In contrast to symmetry breakings, the phenomenon of symmetry restoration
has rarely been discussed in the literature. There has been, for example, one
occasion of mentioning “a bifurcation back to symmetry”,® but nothing was said
about the nature of the bifurcation. Apparently it was addressed to the reverse
period-doubling cascade due to non-monotonic parameter dependence, not to
the genuine symmetry restoration which, as shown in this paper, must take place
in the chaotic region. The mechanism that helps to restore the symmetry is the
collision of the unstable symmetric orbit with the chaotic attractor, i.e., a “crisis”.

In this paper, we present a detailed symbolic dynamics analysis for symmetry
breaking as well as for symmetry restoration. In particular, we are going to show:

1. The bifurcation analysis of symmetry breakings can be carried out simply and
thoroughly for general antisymmetric mappings in much the same way as for
the tangent or period-doubling bifurcations.?!

2. Symbolic dynamics determines the precedence of symmetric orbit over the
asymmetric ones. It provides a selection rule to pick up those orbits of even
periods that are destined to symmetry breaking.

3. Symbolic dynamics furnishes a precise description for symmetry restoration,
determining the location of the asymmetry-symmetry transition and indicat-
ing the infinite sequence of symmetric orbits that converges backwards to the
transition point. The convergence rate is shown to be non-universal.

4. When the inverse branches of the map are known explicitly, the analysis may
be accomplished in a down-to-numbers way by invoking the technique of
“lifting” words in the symbolic dynamics to equations for parameters.'*?

5. Being formulated in the language of symbolic dynamics, the essence of our
analysis applies to differential equations as well. Many previous observations
may be better understood now. We shall make a few remarks in this respect.

The points listed above also give an idea on the layout of this paper. To have a
feeling on antisymmetric maps we start with the cubic map (1).

2. The Antisymmetric Cubic Map

An explicit analysis' of the first bifurcations in the antisymmetric cubic map
may help us to understand the general case. The map (1) becomes non-monotonic
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for A>1 when there are two critical points

c=JAd-1)/34, C=-C. )

(See Fig. 1). It maps the interval (— 1, + 1) onto itself as long as 0 = 4 < 4, but for
Ae(0, 1] the entire map is monotonic. Therefore, we are interested in the
parameter range (1, 4]. Among the three fixed points 0 and = 1, the latter two are
always unstable while x* = 0 is stable for 0 < 4 < 2, so we follow the stable fixed
point x* = Q up to 4 = 2, where an ordinary period-doubling takes place, giving
rise to a symmetric 2-cycle. To determine its stability range, we note that this 2-
cycle is formed by a pair (x*, —x*), related by an inversion. The derivative of an
odd function is even, so for this symmetric 2-cycle, the stability discriminant

.= () =0 ;
eoxl,. \oxl) = 3)

(We write | instead of |, hereinafter.) Contrary to an orbit arising from period-
doubling s can never get negative: s = 1 at 4 = 2 as it should be when arise from
period-doubling, s = 0 corresponds to a symmetric superstable 2-cycle, and again
s = 1 when it loses stability at A = 3. It is at the last point where a symmetry-
breaking bifurcation occurs.

When A4 gets larger than 3, the symmetric 2-cycle loses stability. To calculate
explicitly the asymmetric 2-cycle, we exclude the trivial zeros of f® — x, dividing
it by the fixed point relation f— x and inversion point relation (f+ x)/x, i.e.,

_

i O0X

F.) f(2)
s =
ax

P —x
(fx)—x)(f(x)+x)/x

= A(A2x*+ A1 —A)x*+1). 4)

Its two zeros

x*;:\/A—li\[(A—3)(A+l) )

24
give rise to two 2-cycles
x%——x*—-x* and x* - — x% — x*.
They enjoy stability in the same 4 range

3<Ad<1+4f5,
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each in its own basin. Therefore, only one of them may be observed for a given
initial value. The stability discriminant s reaches —1 at4 = 1 + \/g where a per-
iod-doubling to a 4-cycle takes place.

In what follows, we shall need the explicit expressions for the inverse branches
of the cubic map (1). To solve the equation

y=Ax’—(A—-1x (6)
we rescale the variables, letting

X = 2\/(4—1)/34% = 2C%, y = 2Cy.

Equation (6) can then be expressed through the Chebyshov polynomial
—— = 4%’ — 3% = T,(%) = cos(3 arccos(%)).

Taking into account the multivalueness of the arccosine function, we get
X = cos{ = arccos —, =0,+1,
3 AC? 3

We shall always use rescaled x and y, but neglect the tilde for brevity. With this
convention in mind and introducing the notation

, A—1
ACt = ——=a. (7)

We shall name the three inverse functions by their labels R, L, and M shown in

Fig. 1 as follows:
1 X
R(a,x) = cos(— arccos(—)),
3 a

1 X 2n
L E—1 — — ——n——
(a,x) cos(3 arccos(a> + 3 ), (8)
M(a,x) = cos(l arccos(f) —z)
3 a 3

We note the following symmetry property of these functions
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R(a,—x) = —L(a,x),
9
M(a,—x) = —M(a,x).

Consequently, any composite function W(a, x) made of these functions has the
property

W(a,—x) = —W(a,x)

where Wis obtained from W by interchanging R and L but leaving M unchanged.
Sometimes we say that W is the mirror image of W. Therefore, dragging a minus
sign through a composite function is equivalent to taking its mirror image.

3. The General Case of Symmetry-Breaking Bifurcation

From now on we will consider a general map
Xpr1 = F(4, x,), (10)
where the function F is antisymmetric and depends on a parameter A4:
F(A,—x) = —F(4,x), v x. an

Note that the k-th iterate of F is also antisymmetric:

F®U4,—x)= poFo. . oF(4d,—x) = —F%(4,x). (12)
—————r
k times

Moreover, all odd order derivatives of F with respect to x are even functions,
while even order derivatives are odd functions of x.
Suppose that the iteration reaches an inversion point x*

x* = —F(4,x%), (13)
then x* must be a fixed point of F@, i.e., a symmetric 2-cycle
x¥ —x* x* —x* x* ....
One can check the stability of the inversion point as well as the stability of the

2-cycle. When the inversion point is no longer stable, a symmetry-breaking
bifurcation takes place and gives rise to a pair of asymmetric 2-cycles:

* 4K Kk
XT» XX, X eens
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(|x* # |x%]) and its mirror image
—x% x% —xt x¥%, ... .

We are interested in the formulation of the conditions when this happens.
In general, when there is an inversion point for a certain iterate

x* = —FO(4 x*), (14)

it must be a 2k-cycle of F, i.e., a fixed point of F*

+ x* = F (4, £ x%). (15)

Therefore, double application of the inversion relation leads to an even period.
However, not all even periods may be decomposed into two consecutive
inversions. The appropriate criterion will be given later in Sec. 4, using symbolic
dynamics. For the time being, we will ask the question: under what conditions
can an inversion point lose stability and cause symmetry-breaking bifurcation to
occur,

The analysis furnishes a simple and clear example of applying the implicit
function theorem in the bifurcation theory and proceeds much like that for
period-doubling bifurcation, given by, e.g., Guckenheimer.?! The difference of
these two cases consists of the fact that while many partial derivatives
encountered in the analysis of Guckenheimer vanish due to the period-doubling
condition

oF
0x |

=—1

3

they now disappear as a result of the antisymmetry conditions. To our best
knowledge, such a detailed analysis has not yet appeared in the literature. Being
carried back to the period-doubling case, our presentation provides also a few
technical improvements. For this reason, we will describe it in some detail in the
Appendix. We formulate here only the conditions and the

Proposition. Suppose F(A4,x): I — I is an antisymmetric map of the interval /
onto itself and the following conditions hold:

1. There is an inversion point x* at the parameter value 4*

x* = —F(4*,x%*).

It is then a fixed point of F®.
2. The stability is marginal with the only possibility that
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oF
ox

oF

o~ 0X

= 1.

-—x*

3. The Schwarzian derivative S(F,x)|,. < 0. This condition holds automatical-

ly for most maps of physical interest, because they do have negative
Schwarzian derivatives on the whole interval 7, not only at the point x*.
4. The mixed second derivative of the second iterate does not vanish:

62 F(Z)
#0.
3x0A |+

Then on one side of 4* (which side depends on the sign of the mixed derivative
that figures in Condition 4, there exists a stable symmetric 2-cycle, which
undergoes symmetry-breaking bifurcation at 4 = A* into a pair of asymmetric
2-cycles, both stable but observable in their own basins.

4. Symbolic Dynamics as Selection Rule for Symmetry Breakings

Symbolic dynamics of the cubic map has been developed elsewhere.?>* We
briefly sketch what will be needed in the sequel. We label the three monotonic
branches of the map of the letters R, M and L, as denoted in Fig. 1. Then any nu-
merical orbit

X0, X1 =f(x0),"' 9xn=f(xn—l),-" H

finite or infinite, may be replaced by a “word” made of these letters. The letters C
or/and C may appear in a word if the corresponding orbit contains one or both of
the critical points (2). The monotonic decreasing branch M is assigned an odd
parity, whereas R and L — an even parity. C and C may be assigned “zero” parity
for convenience. The parity of a symbolic sequence is determined by the number
of M’s it contains.

Referring to the natural order

L<C<M<C<R (16)

an ordering of symbolic sequences is introduced as follows. Given two words W)
= W*g...and W, = W*t ... where W* denotes their common leading pattern
and o #7, then the order of the two words is the order of ¢ and Tt if the parity of
W* is even, otherwise it is the anti-order of ¢ and 7, i.e.,

W,> W, if ¢ > 1 when W* is even,

(17)
W, > W, if ¢ > 7 when W* is odd.
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A symbolic sequence X is called a maximal sequence, if it is larger than or equal
to all shifts S*X, where J° denotes the left-shift operator, i.e.,

J0,0,05... = 0,05...
and
JJS. .S
Jh=2"
k times

In particular, a periodic sequence
(0,0,...0,)"

represents the same orbit under cyclic shift of n letters. We take the convention of
always writing the maximal sequence.

Starting the iteration from C, one gets a largest (in the sense of the above order-
ing) sequence or itinerary Iz, it denotes also the point f(C) on the interval.
Starting from C, one gets a smallest itinerary I, represented by another point
f(C) on the interval. For a mapping function with negative Schwarzian
derivative everywhere, any initial value that is larger than I~ or smaller than I
will eventually enter the interval (I, I¢), leaving apart a transient. Therefore, we
can confine ourselves to this interval only. In general, sequences satisfy the
compatibility condition

Ioc<J*E < I5. (18)

For antisymmetric maps /- is the mirror image of 1.

A superstable orbit must contain the letter C or C, or both. An asymmetric
superstable orbit contains only one of the critical point, while a symmetric one
must be of the form

>CEC (19)

where £ is the mirror image of .

An asymmetric superstable orbit X C can be extended to a “window” according
to the periodic window theorem?*-** by changing the last C into M and L and
arranging the three words in ascending order:

If T is even: (XL, XC,ZM),
(20)
If £ is odd: M, XC,XL).
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Note that the parity of these three words determines the signature (+1,0,—1),
which coincides with the signs of the first derivatives and signais a period-
doubling bifurcation at the right end of the window. The actual width of a
window, i.e., the stability range, is determined by the mapping function.
Symbolic dynamics alone cannot say anything about it. In particular, a period-
doubling sequence may shrink into a single point, as it is the case with piecewise
linear maps with the slopes greater than one.

In general, symbolic description of a period-doubling sequence goes as follows.
We write the preceding window as

(4, tle.n)

where 4 and y are symbolic sequences and |z denotes the sequence u with its last
letter replaced by C, A has even parity, whereas u is odd. In addition, they differ
only in the last letter, i.e., u|¢ = 4|z. The right (or upper) sequence £ goes into the
next, period-doubled, lower sequence smoothly as yu to ensure the correct even
parity. The whole window then looks like

(aagt, | &, A ) -

This process repeats ad infinitum to yield the entire period-doubling sequence.
Beyond the accumulation point of the sequence there is a period-halving
sequence of chaotic bands. The point where a period 2" band merges into a period
2"~! band is described by an infinite symbolic sequence formed from the upper
and lower sequences of the corresponding period 2" window as

LA, (21)

What has been said holds for general smooth one-dimensional mappings,
including the unimodal and cubic maps.

Now consider a symmetric orbit described by a sequence ZCZC. Let us disturb
the orbit slightly, giving up the superstability but keeping the symmetry. The
letter C may change to R or M by continuity, and C goes to L or M as the mirror
image. The three words thus obtained may be ordered according to the parity of &
to form a window

T even: EMEIM,XCEC TRIL),
(22)
% odd: (EREL,XCEC, SMEIM).

In contrast to windows, capable of undergoing period-doubling, this window has
the signature (+1,0,+1) and may be called an inversion point window in
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accordance with our terms in Secs. 2 and 3. It is easy to check that the inversion
window is equivalent to its mirror image (up to cyclic shifts, inessential due to
periodicity). Only such a window undergoes a symmetry-breaking bifurcation,
giving rise to an asymmetric window of the same period that starts a period-
doubling sequence. Again, the upper sequence of the window (22) goes smoothly
into the next window as the lower sequence of the latter. The upper sequence of
the new window may be obtained by replacing the last letter to fit the — 1 parity
and the central word — by changing the last letter to C. However, by taking the
mirror image we get another window, not equivalent to the original one. This is
nothing but the other symmetry-broken window. If the three words in the original
window are maximal sequences, then the words in the mirror image window are
minimal since the starting point is now located in the valley of the mapping
function.

We illustrate what has been said by a few examples.

Example 1. The simplest symmetric superstable word is C C. It extends to the
inversion point window

(MM,CC,RL). (23)

This is the most clearly seen period 2 in the bifurcation diagram Fig. 2. By contin-
uing RL to the lower sequence of the next window, we construct one of the asym-
metric period 2 orbits as

(RL,RC,RM). (24)
Its mirror image, in terms of minimal sequences in descending order, is

(LR,LC,LM). (25)
By cyclic shifting, the window (25) may be brought to maximal sequences

(RL,CL,ML). (26)

Example 2. There is only one period 4 superstable orbit RCLC. We write the
whole bifurcation structure as:

(RRLL,RRLC,RRLM)

27
(RRLL,RCLL,RMLL).

(RMLM,RCLC,RRLL) {

Example 3. There are two symmetric orbits among the 30 period 6
windows?®?’ that allow symmetry-breaking bifurcation: RMCLMC and
RRCLLC. Among the 205 period 8 windows, only 5 can undergo symmetry
breaking, namely:
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RM*CLM?*C, RMLCLMRC,R*LCL’RC,
R*MCL*MC, R’CL’C.

Therefore, we see that although symmetry breakings are always associated with
orbits of even periods, only a few even periods are capable of doing so. Symbolic
dynamics provides the selection rule.

If the inverse branches of the mapping are known explicitly, we can locate the
symmetric and asymmetric superstable orbits exactly by the technique of
“lifting” the corresponding symbolic sequence to an equation for the parameter
value.!*?° We return to the antisymmetric cubic map (1). Its inverse branches
have been given in Egs. (8). The sequence SCXC describing a symmetric
superstable orbit yields an equation

a = X(a,0.9), (28)

where we have used the definition (7) for a and the rescaling of the variables by
2C. Take, for example, the period 6 orbit RMCLMC, the final iteration equation

reads
1 1 1 0.5\ 2=
a,+1 = €OS 5 arccos a—" Ccos 3— arccos a — ._3_ ,

and leadsto 4 = 3a+1 = 3.46328 ...
An asymmetric superstable orbit CWC . . . yields the equation

a = W(a, —0.5). (29)

The fact that the mirror image orbit CWC. . . has the same parameter is a simple
consequence of the symmetry property (9).

5. Symbolic Dynamics and Symmetry Restoration

We have mentioned in the Introduction that symmetry restoration has not
been analyzed in the literature to date. In fact, symbolic dynamics provides us
with a straightforward tool to accomplish this task. We recall?® that the starting
point of a periodic window

(A, ple, 1)
which permits period-doubling, i.e., a window with (+1, 0, —1) signature,

corresponds to a band-merging point described by the sequence ul®. Applied to
the period. 2 symmetry-broken window (24), we locate the ending of the
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symmetry-broken regime at
RM(RL)™. (30)

The very form of (30) tells the nature of this point. It corresponds to the *‘crisis”
created by the collision of the unstable symmetric period 2 orbit, represented by
(RL)*, with the asymmetric chaotic attractor.

Its parameter value can be calculated from the following pair of “lifted”
equations

a = RoM(a,b),
(31)
a = RoL(a,b),

where the functions R,M, and L have been defined in Eqs. (8). The iterative
solution of Egs. (31) yields

A = 3.360893769096575 . .. . (32)

On the other hand, the mirror image of the window (24), i.e., window (26),
corresponds to an asymmetric chaotic band, ending at

ML(RL)*. (33)

Referring to Egs. (9), it is easy to verify that the parameter value of (33) is the
same as that given by Eq. (32).

The symbolic sequence, corresponding to the symmetry restoration point,
should have, so to speak, a “double personality”. Seen from the left, it is
asymmetric; seen from the right, it ought to be symmetric. Indeed, the sequences
(30) and (33) are manifestly mirror images of each other, a property of symmetry-
broken pairs. On the other hand, the symmetry has actually been restored since
both sequences appear to be the m— oo limit of the following periodic orbits, all
located beyond the symmetry-restoration point (32):

RM(RL)""' ML(RLY" = RM(RL)" RLM(LR)"L.

These orbits are nothing but the lower sequences of the inversion point window,
formed by the symmetric periodic orbits

RM(RLY"CLM(LR)"C, 34)

which are equivalent to the cyclically shifted sequences
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LM(LRY"CRM(RL)"C, (35)

as long as m remains finite. However, the m— co limits of (34) and (35) approach
the asymmetric sequences (30) and (33), respectively.

It is interesting to investigate the rate of convergence of these periods towards
the symmetry-restoration point, which may be considered as the m = oo member
of the family (34). The corresponding superstable parameters may be determined
by the word-lifting technique described in Sec. 4 and are listed in Table 1 (in the
actual calculation we have kept more digits). The numbers J,, are calculated from

the formula

These A4,’s are asymptotically proportional to the length of the periods and
converge much faster than the Feigenbaum period-doubling sequence, with the
convergence rate d = 2.96455 . .., which coincides with the derivative

Table 1. Convergence towards the symmetry-restoration

point.

m Period A Om

0 6 3.41592 61947

1 10 3.39439 31930

2 14 3.37305 84369

3 18 3.36519 01399 2.71148
4 22 3.36237 69478 2.79693
5 26 3.36139 92781 2.87745
6 30 3.36106 50252 2.92494
7 34 3.36095 16371 2.94786
8 38 3.36091 33022 2.95784
9 42 3.36090 03597 2.96193
10 46 3.36089 59924 2.96355
11 50 3.36089 45191 2.96417
12 54 3.36089 40221 2.96441
13 58 3.36089 38544 2.96450
14 62 3.36089 37978 2.96453
15 66 3.36089 37788 2.96455
16 70 3.36089 37723 2.96455
17 74 3.36089 37702 2.96455
18 78 3.36089 37695 2.96455
19 82 3.36089 37692 2.96455
20 86 3.36089 37691 2.96455

N
—
..\
o

3.36089 37691 2.96455

o;a oo 3.36089 37690
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u=re,

taken at the unstable 2-cycle z* = (RL)® of the parameter 4. This observation
can be explained as follows. From Eq. (34) we have

Denote by ¢, the parameter difference 4, — A4,,. For m large enough,

|Zm = 2¥| ~ &m,

(37

a
5f(2)(Am,X)IZ,,, ~ U Ve,

where y is a constant independent of m. Thus, one has asymptotically
(u+7e,)" e~ 1,

which implies ¢,, ~ 4 " or é = u.

Symmetry restoration for higher periods may be analyzed in a similar way.
Suppose there is a symmetric orbit ZCZC. The inversion point window may be
represented as

(Bu, ZCEC, pa), (38)

where p, A and g are symbolic strings made of R, L and M, each having the parity
of the corresponding letter. They are related to £ and X in the following way:

p = the even one of (R, M),
1 = the odd one of (ZM, L), (39)
A = the even one of (ZM, ZL).

In fact, p and 4, as well as g and f1, are mirror images, and, in general, 7 differs
from u. Then the pair of asymmetric orbits is given by

(ph, pEC, pi),
(40)
(4p, AXC, Ap).

The symmetry restoration point is described by
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PE(pA)™ or Au(Ap)”. 41)
They are the m— co limits of the sequence of symmetric orbits
z,CL,C, (42)
where
X, = pii(pA)" and Z,, = iu(ip)". (43)

It is worth mentioning that Egs. (38) to (43) may be obtained from the simplest
case of symmetry breaking and restoration, namely, that associated with the
sequence CC and described by Egs. (23) to (25) as well as Eqgs. (30) through (35),
by making the following substitutions:

M—p, (44)

For the cubic map (1) all the superstability and symmetry restoration
parameters may be calculated by solving the “lifted” equations. We have
collected a few results in Table 2.

6. Discussion

Now we are in a position to make a few remarks in connection with previous
observations of symmetry breakings in dynamical systems with an antisymmetry.
1. Asymmetry as “a necessary preliminary™® or “precursor”’>'® to period-
doubling appears to be a direct consequence of ordering of symbolic sequences.
Although for differential equations, the only case of an explicit association of

Table 2. Symmetry breaking and restoration parameters.

Period z Symmetric Asymmetric Restoration ]
2 2.5 3.12132 03436 3.36089 37691 2.96455
6 RM 3.34531 55584 3.46328 34578 3.46851 19419 2.83903
4 R 3.83081 15142 3.83989 44876 3.84470 61353 2.84205
6 RR 3.98179 73948 3.98189 90306 3.98195 41883 2.82018
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symbolic dynamics to symmetry breaking seems to be the Lorenz system, ! this
fact calls for further application of symbolic dynamics to differential equations.

2. The observation that there exist period-doubling sequences which are not of
the Feigenbaum type®?® may be better understood in light of our symbolic
dynamics analysis. The authors of Ref. 5 put together the inversion windows of
periods 2, 4 and 8, but skipped the period-doubling sequences, i.e., the true
Feigenbaum sequences, that followed each symmetry breaking.

Of course, it is possible to select ordered period 2" sequences in some way,
other than Feigenbaum’s. In Ref. 28 the same authors carried out a symbolic
description for the period 2” sequence in an antisymmetric map. In our notation
the sequence may be generated in the following way. Starting from a symmetric
orbit £,CE,C, construct the period-doubled sequence X,CE,C by taking

2, =E0), 21

where (2C), means keeping the even sequence after changing Cto R and M. This
is equivalent to the simple substitutions

C—RandC — CforevenX,,
C—MandC— CforoddX,,

in any symmetric orbit and then append its mirror image to get a word of double
length. The process then repeats ad infinitum. The simplest choice X, = b (blank)
leads to the sequence

cC

RCLC

RRLCLLRC
RRLRLLRCLLRLRRLC

that has been studied in Ref. 28. Clearly, there are infinitely many ways to choose
2, e.g., 2, = RM leads to a 3 X 2" sequence. These sequences converge much
faster than the Feigenbaum case.

3. The observation of repeated bifurcations from symmetric orbit to asymm-
etric pair in the Duffing’s equation, denoted as P,— P in Ref. 10 fits well into
the symbolic dynamics scheme of Sec. 4. It is worthwhile to work out the absolute
nomenclature of periodic windows and to find the explicit symbolic dynamics of
the model. Most probably, symbolic dynamics of three letters would provide the
skeleton of the global bifurcation structure, as it was the case with the Lorenz
model."?
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4. In Ref. 2, a class of codimension 2 antisymmetric mappings was studied. A
“new type”’ of bifurcation caused by the presence of a second parameter was asso-
ciated with the symmetry breakings seen in the bifurcation diagram, aithough it
had nothing to do with the latter. Their numerically measured value a,; = 3.361
for the “next reverse bifurcation” is just the symmetry restoration point
corresponding to RM(RL)®, the exact value being given in the first row of
Table 2.

Furthermore, the last, but not the least point concerns the study of symmetry
restoration in differential equations. Symmetry restoration is inevitably associ-
ated with chaotic dynamics, as it occurs only in chaotic bands when a symmetric
unstable orbit collides with the attractor. The phenomenon is not only associated
with the first bifurcation that occurs when the nonlinearity gets strong enough,
but exists in plenty for higher periods and larger parameter values. One must use
symbolic dynamics as a guideline to understand the global systematics of the
periodic and chaotic solutions.

After our preprint ASITP-88-035 of this paper has been distributed, we
received a preprint of Szabé and Tél* which treats the symmetry breaking
problem without explicit use of symbolic dynamics. We thank Szabo and Tél for
sending the report.

Appendix. Proof of the Proposition of Section 3

To avoid clumsiness of notations, we consider only F and F'», they may be
replaced by F® and F®¥ everywhere below. We divide the proof into a few steps.
Step 1. Construct an auxiliary function

h(4, x) = F(4, x) + x;
the inversion point of F becomes a zero of 4:
h(A*, x*) = 0.
Calculate the derivative

dh
—1 = 2#0 (Condition 2).
0x x*

Therefore, according to the implicit function theorem, there exists a function
X = x(A) such that

h(4,x(4)) = 0

in the vicinity of (4*,x*). In other words, an inversion points exists both above
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and below 4*, but the stability may disappear on crossing A*. In order to check
the stability, we calculate the first partial derivative close to (4*, x*):

F d*F 1 9F] 9*
_(A*+5,x)xAt+§ = l+ | - F1 F1 5+...
dx ( )

axadl, 204l 9x2,
(45)
19%F®
=14 S+ ...
2 3x0A4

*

Therefore, as long as Condition 4 holds, the inversion point (and the 2-cycle
formed by iterating it) will be stable on one side and unstable on the other side of
A*, depending on the sign of the mixed derivative. So far we have not studied the
stability of 2-cycles by directly inspecting F'¥. For this purpose:

Step 2. Construct another auxiliary function

g(4,x) = F? (4,x)— x.
It is easy to see that both first partial derivatives vanish:

ag
ox

d
* aAt

due to the antisymmetry condition. Therefore, g = 0 is not a suitable relation to
apply the implicit function theorem. Before going to the next step, we calculate
two higher derivatives for later use:

62

sl _,

ox~l,

d%g

6-—3 = 2S(F,x)|, < 0 (Condition 3).
X7 e

Step 3. The failure in choosing g was caused by the fact that F® contains the
“trivial”, 2-cycle formed by the inversion point studied in Step 1. It is better to
exclude it beforehand. Thus, instead of g, we define

A’
k(A,x) = %%;

To calculate k(4*,x*) and the derivatives, one encounters many uncertainties of
the 0/0 type, which can be resolved by repeated use of L’Hospital rule, taking into
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account the derivatives of # and g, calculated so far. The final results are:

k(4*, £x* =0,

ok

— = 0’

0X| 4

k| _  19°F?
ddls 2 0x9A4 1.
k|l lS(F 0
ol 3 ,X)| e < 0.

Therefore, according to the implicit function theorem, there exists function 4 =

A, (x)and A = A _(x) such that

# 0, (Condition 4),

k{(A.(x),x)=10

in the vicinities of (4*, =+ x*), respectively. One can differentiate the above

equation twice to get

d14 ——
adl,. Y
(46)
a4 2 S(F,x)|,
dxz o+ 3 82F(2)
0x0A

*

Clearly, 4 = A4, (x), viewed as a function of x, have either a minimum or a
maximum in 4, depending on the sign of the mixed derivative in Condition 4. In
addition, the convexity of 4 = A4, (x) agrees with the sign of the J term in
Eq. (45), as both were determined by the same mixed derivative. The four
branches of 4, (x) and 4_(x) form a pair of 2-cycles. There remains to check the
stability of these 2-cycles by expanding the derivative F®/dx in the neighbour-
hood of (4*, = x,). Owing to Egs. (46) and

92 F?

ax?

F?

ax?

+

*

0 (consequence of antisymmetry),

= 25(F,x)| =,,

the dx term vanishes in the expansion and we have
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JF®
ox

2 2
= 1+ 3S(EX)] @0 +

Therefore, both 2-cycles are stable. Which 2-cycle is observed for a given initial
value depends on the basin and the question goes beyond the scope of the local
analysis of bifurcation theory.
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