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Kenneth Wilson’s Nobel Prize winning breakthrough in the renormalization group theory
of phase transition and critical phenomena almost overlapped with the violent “cultural
revolution” years (1966–1976) in China. An unexpected chance in 1972 brought the
author of these lines close to the Wilson–Fisher ǫ-expansion of critical exponents and
eventually led to a joint paper with Lu Yu published entirely in Chinese without any
English title and abstract. Even the original acknowledgment was deleted because of
mentioning foreign names like Kenneth Wilson and Kerson Huang. In this article I will
tell the 40-year old story as a much belated tribute to Kenneth Wilson and to reproduce
the essence of our work in English. At the end, I give an elementary derivation of the
Callan–Symanzik equation without referring to field theory.
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1. Introduction

There has never been a tower of ivory for scientists working in a developing coun-

try. In his report to the South Commission1 Abdus Salam reproduced a figure by

Dadison Frame. The figure showed the annual publication of scientific and techno-

logical papers versus GNP for the year 1973. Most points fell around two straight

lines, that for developed and developing countries, respectively. There was, however,

a striking lonely outlier far below many least-developed countries. It represented

China.

In the summer of 1972, an unthinkable opportunity threw four Chinese physi-

cists into the Canadian Congress of Physicists held in Edmonton, Alberta. Michael

Fisher talked about his joint work with Kenneth Wilson on ǫ-expansion of the

1430008-1

http://dx.doi.org/10.1142/S0217979214300084
mailto:hao@mail.itp.ac.cn


May 7, 2014 16:27 WSPC/Guidelines-IJMPB S0217979214300084

B. Hao

critical exponents.2 With my poor English at that time, I could only appreciate

the importance of the renormalization group approach. Upon return to Beijing, I

immediately read the two 1971 papers of Wilson.3,4

I must explain how could I get access to scientific literature in a time when all

libraries were closed. At that time, the Institute of Physics was led by represen-

tatives of the People’s Liberation Army (PLA). In order to prepare for “science

reform” they appointed a group of scientists to do investigations on physics re-

search in China and abroad. This allowed me to get into the closed libraries. Xerox

machine was something unheard of. We had to make notes by hand.

The first two papers of Wilson were quite hard to grasp. Early 1973, Professor

Kerson Huang paid a visit to Beijing. In a discussion, he mentioned that Kenneth

Wilson had given a series of lectures in Princeton and promised to write to Kenneth.

Soon, Wilson sent us a Cornell preprint5 which later appeared in Physics Reports.6

The “later” here meant at least half a year delay or more as the libraries had only

surface mail subscriptions.

After digesting the available information, our goal was clear: calculate the ǫ ex-

pansion to high powers of ǫ in order to compare with experimental measurements

and to check the scaling relations among critical exponents. An approach by com-

paring skeleton graph with scaling relation7,8 came to my attention. Skeleton graphs

were closer to my heart as more than 10 years ago in one of the Landau seminars in

Moscow I listened to K. A. Ter-Martirosyan talking about applying skeleton graph

expansion to meson scattering. The authors of Refs. 7, 8 considered the special

case of n = 2 Bose systems and their result could not be extended to general n and

higher-orders. Especially, the analysis at the critical point was lacking. I undertook

to study the general n case.

There was a theoretical division in the Institute of Physics, of which I was the

Deputy Head. The division was created in 1959 upon reflection of the “Great Leap

Forward”. In 1969, it was disbanded by the PLA officers as a “typical example of

isolation of theory from practice”. In 1973 I succeeded in restoring a small theoret-

ical group in the laboratory of magnetism. Another important fact that allowed me

to do some science consisted in that I was nailed to the bed by lumbar disc rupture.

Our group member Lu Yu came and worked at my bedside and then reported to

the group. Eventually, Yu was the only one who could catch up with the work.

The official journal of the Chinese Physical Society Acta Physica Sinica stopped

publication for more than seven years, from the fall of 1966 to the end of 1973. It

was decided to restore publication from January 1974. Our paper9 arrived at the

editorial office on 5 December 1973 and appeared in print only in May 1975. The

paper did not have an English title and abstract. Originally, we thanked Kerson

Huang and Kenneth Wilson for helping with the Princeton lecture notes. However,

we were asked for the political attitude of these foreigners and we decided to delete

the whole acknowledgment. In the spring of 1977, a group of solid state physicists

from the Chinese Academy of Sciences visited France and Germany for the first time

after many years of isolation from the outside world. After my talk at Orsay on
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closed-form approximation for the three-dimensional Ising model, I had a discussion

with Eduard Brézin by pointing to formulas in our Chinese reprint. This was the

start of our many-decade friendship with Eduard Brézin.

2. Critical Exponents and Scaling Relations

In continuous phase transitions, thermodynamic functions and their first derivatives

are continuous, but high-order derivatives may be singular at the transition point

Tc. The behavior of thermodynamic quantities near critical point is described by

various critical exponents. For example, the singularity of specific heat near a critical

point is described by the exponent α:

cv ∼ (T − Tc)
−α (T ≥ Tc) (1)

The behavior of spin or density correlation function near the critical point is

better expressed via their Fourier transform as

G(P → 0, T = Tc) ∼ P−2+η , (2)

which involves another exponent η.

Another limit of the same correlation function is associated with the initial

magnetic susceptibility (or isothermal compressibility) χγ :

χγ ∼ G(P = 0, T → Tc + 0) ∼ (T − Tc)
−γ , (3)

where a third exponent γ is introduced.

Historically, various phase transition analyses were unified in the Landau mean

field theory which yields the same exponents: α = 0 (finite discontinuity), γ = 1,

and η = 0.

The situation was more or less satisfactory until the mid 1960s when precise

experimental measurements and exact statistical models all showed that there were

definite deviations of critical exponent values from the mean field theory. Neverthe-

less, some relations between the critical exponents turned out to be holding. Leo

Kadanoff10 and Michael Fisher11 called attention of the statistical physics commu-

nity to this challenge. Unfortunately, their well-known reviews10,11 were overlooked

by Chinese physicists as the “cultural revolution” broke out on 1st June 1966.

3. Classical Field Theory Representation of Statistical Problem

Near Critical Point

We adopt the model of Wilson.4 Consider the interaction of classical spins with

n components in a d-dimensional lattice. Here, “spin” is nothing but the order

parameter in theory of continuous phase transition. In the calculation of statistical

partition function, the summation goes over all states {S} from nearest-neighbor

lattice points

Z =
∑

{S}

exp

(

− E

kT

)

=
∑

{S}

exp





K

2

∑

m,i

Sα
mSα

m+i



 , K =
J

kT
, (4)
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where J denotes the exchange integral, m represents the position vector of the cell,

i represents the relative position vector of the nearest neighbors (in what follows

we do not use boldface for vectors). The repeated spin superscript α performs

summation from 1 to n. By introducing a convergent factor − b
2S

α
mSα

m and treating

Sα
m as a variable taking continuous values, the summation in Eq. (4) may be replaced

by integration. Furthermore, changing the lattice point function Sm to a function

of continuous medium S(x) and absorbing K by rescaling S, we get

Z =

(∫

DS

)

exp

[

−1

2

∫

x

((▽S)2 + r0S
2)

]

, r0 =
b

K
− 2d . (5)

From now on, functional integration over infinite function system as well as ordinary

d-dimensional integration will be represented by shorthand notations:
(∫

DS

)

≡ lim
m→∞

(

∏

m

∫ ∞

−∞

dSm

)

,

∫

x

≡
∫

ddx,

∫

q

≡
∫

ddq

(2π)d
. (6)

The gradient term (▽S)2 comes from nearest neighbor interaction. Performing

Fourier transformation S(x) =
∫

q
eiqxσq and neglecting the common factor which

appears during function substitution in the functional integral, we have

Z =

(
∫

Dσ

)

exp(H0) (7)

and

H0 = −1

2

∫

q

(q2 + r0)σ
α
q σ

α
−q . (8)

H0 is the Hamilton function of a free classical field. It is the simple Gaussian

model in statistics. All statistical averages are Gaussian averages. For example,

spin correlation function is nothing but the propagator of the classical field:

〈σα
1 σ

β
2 〉 = G0(q1, r0)δ(1 + 2)δαβ =

δ(1 + 2)

q21 + r0
δαβ , (9)

where 1, 2 are shorthand for the momenta q1, q2. We know the temperature depen-

dence near critical point from Eq. (3):

χγ ∼ G0(0, r0) =
1

r0
, r0 ∼ (T − Tc)

γ . (10)

In the Gaussian model, all high even-order spin correlation functions decompose

into combinations of second-order correlation functions, and odd-order correlation

functions vanish. This decomposition corresponds to Wick theorem in field theory.

Wilson observed that critical exponents of Gaussian model coincide with that

of mean-field theory. Spin distribution function in Gaussian model has a maximum

at S = 0, far departing from general statistical models. However, if one inserts a

fourth-order term into the convergence factor of Eq. (5), one may go beyond the

mean field theory. Then, the Hamilton function reads:

H = H0 +HI = H0 −
u0

3
∆(αβγδ)

∫

σα
1 σ

β
2 σ

γ
3σ

δ
4δ(1 + 2 + 3 + 4) , (11)

1430008-4



May 7, 2014 16:27 WSPC/Guidelines-IJMPB S0217979214300084

Skeleton graph expansion of critical exponents

where u0 corresponds to the coupling constant in field theory with φ4 interaction,

∆(αβγδ) is a fully symmetric unit tensor:

∆(αβγδ) = δαβδγδ + δαγδβδ + δαδδβγ . (12)

Various products and contractions of ∆αβγδ (i.e., summations over repeated

indices) frequently appear in the calculation of high-order terms. We postpone

these monotonic yet useful technicalities to Sec, 6.2.

The average of any product A of field functions

〈A〉 = 〈A exp(HI)〉0
〈exp(HI)〉0

may be decomposed and one can prove a connected-graph expansion theorem.

Detailed enumeration of diagram coefficients and calculations of integrals will be

given in Secs. 6 and 7.

In this model, propagators contain temperature, but bare interactions do not

depend on temperature. High-order vertexes depend on temperature by way of

propagators. Consequently, the momentum-independent part in self-energy diagram

leads to a shift of critical point. In order to take into account this point, it is better

to include this part of contribution from the self-energy diagram into r0. This “mass

renormalization” process may be realized by way of a cancelation term well-known

in field theory, i.e., rewriting Eq. (11) to

H = −1

2

∫

(q2 + r)σα
1 σ

α
−1 −

1

2

∫

(r0 − r)σα
1 σ

α
−1 −

u0

3
∆(αβγδ)

∫

σα
1 σ

β
2 σ

γ
3σ

δ
−1−2−3

(13)

and requiring that the exact propagator G(q, r) satisfies a condition similar to

Eq. (10) at q → 0:

χγ ∼ G(0, r) =
1

r
∼ (T − Tc)

−γ . (14)

Momemtun-independent part in self-energy diagram cancels out with the second

term in Eq. (13), the cancelation equation defines r. When calculating a complex

diagram containing self-energy part, one must introduce a subtraction term as ex-

plained in details in Eq. (54) in Sec. 6. In this paper, we use the same notation

for the exact propagator and for the free propagator G(q, r) = (q2 + r)−1 after

“mass renormalization”, their difference is clear from the context. Skeleton graphs

are those composed of exact propagators.

4. Skeleton Graph Analysis of Four-Point Vertex

The four-point vertex Γαβγδ(1234) discussed in this section is four-spin correlation

function excluding disconnected diagrams and amputating single-particle external

lines. Usually the r dependence is not written out explicitly. Since the σ’s are

commutative classical quantities, Γ is fully symmetric with respect to both spin
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Fig. 1.

indices and momentum. We bind together the spin superscript and momentum,

i.e., binding 1 ↔ α, 2 ↔ β, etc. There are 4! permutations. In fact, they should be

symmetrized separately, leading to (4!)2 permutations. Later on, when discussing

the forward scattering amplitude at r = 0, we have to symmetrize the spin super-

scripts separately.

The 4! diagrams obtained from a four-point vertex by permutating external lines

are divided into three groups: (12; 34), (13; 24) and (14; 23), corresponding to the

s, t and u channels in field theory. Some diagrams are reducible in one channel,

i.e., becoming disconnected parts by cutting two internal lines; some are entirely

irreducible. Diagrams reducible in one channel are irreducible in the other two

channels. A complex diagram may be reducible in one channel, its subdiagrams

may be reducible in other channels. If all subdiagrams are reducible in one or

another channel, then the complex diagram is called a parquet diagram. The total

of diagrams, reducible in one channel, is denoted as, e.g., Γαβ;γδ(12; 34). The total

of diagrams, irreducible in one channel, is denoted as Iαβ;γδ(12; 34), represented by

squares in Fig. 1. Γαβ;γδ may be obtained from Iαβ;γδ by iteration, as shown in

Fig. 1.

If taking out the leftmost square and summing over the remaining I, we get a

fully symmetrized total vertex Γαβγδ(−5− 634):

Γαβ;γδ(12; 34) = −36

∫

Iαβ;µν(12; 56)G(5)G(6)Γµνγδ(−5− 634) . (15)

δ-functions ensuring momentum conservation are not written out explicitly in the

above formula. The calculation of the numerical coefficient is given in Sec. 6. The

total vertex is expressed via the sum R of vertexes reducible in some channel and

diagrams irreducible in all three channels, the lowest order diagram of the latter is

the 4-point diagram in Fig. 3(h):

Γαβγδ(1234) =
1

3
(u0 +R)∆(αβγδ) +

1

3
Γαβ;γδ(12; 34)

+
1

3
Γαγ;βδ(13; 24) +

1

3
Γαδ;βγ(14; 23) . (16)

Inserting Eq. (15) into the above equation, we get Fig. 2.

Γαβγδ(1234) =
1

3
(u0 +R)∆(αβγδ)− 12

∫

Iαβ;µν(12; 56)G(5)G(6)Γµνγδ(−5− 634)

− 12

∫

Iαγ;µν(13; 56)G(5)G(6)Γµνβδ(−5− 624)
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Fig. 2.

− 12

∫

Iαδ;µν(14; 56)G(5)G(6)Γµνβγ(−5− 623) . (17)

If separating out a part, irreducible in one channel:

Iαβ;γδ(12; 34)=
1

3
(u0 +R)∆(αβγδ)−12

∫

Iαγ;µν(13; 56)G(5)G(6)Γµνβδ(−5−624)

− 12

∫

Iαβ;µν(14; 56)G(5)G(6)Γµνβδ(−5−623) , (18)

then Eq. (17) may be written as an ordinary Bethe–Salpeter equation:

Γαβγδ(1234) = Iαβ;γδ(12; 34)− 12

∫

Iαβ;µν(12; 56)G(5)G(6)Γµνγδ(−5− 634) .

(19)

One can write down similar equations using I irreducible in the other two channels.

In the theory of critical phenomena, we have to discuss two limits of the total

four-point vertex:

(1) The long wave length limit P = 0 which becomes important due to divergence

of the correlation length. We need the vertex UR near the critical point r → 0:

Γαβγδ(0000; r) ≡ 1

3
UR∆(αβγδ) . (20)

(2) The forward scattering amplitude Γ(P ) at the critical point r = 0 in the P → 0

limit:

Γαβγδ

(

P

2

P

2
;−P

2
− P

2

)

=
1

3
Γ(P )∆(αβγδ) (21)

By a skeleton graph analysis we can obtain ∂UR

∂r
and ∂Γ(P )

∂P
from the above

definitions. Further comparison with the scaling relation6

∂UR

∂r
/UR =

4− d− 2η

2− η

1

r
(22)

and

∂Γ(P )

∂P
/Γ(P ) = (4− d− 2η)/P , (23)

one determines entirely UR and Γ(P ) contained in the expression. A pivotal point

here consists in that u0 is not required to be a small quantity beforehand, but UR
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and Γ(P ) are indeed small when the physical system approaches four dimension

(small ǫ) or the internal degree of freedom n is great.

We first consider the skeleton graph expansion of UR.

For the sake of clarity, we first keep terms up to U3
R. Putting external momen-

tum to zero and performing “graphical differentiation”: i.e., first take derivative

of propagators in between the irreducible parts, due to the arbitrariness of their

positions the infinite series on both sides again sum up to Γ; then take derivatives

of I at the two ends and in the middle. In this way, we obtain

∂

∂r
Γαβγδ(0)

= −36

∫

Γαβµν(00q − q)
∂

∂r

(

G2(q)
)

Γµνγδ(−qq00)

− 36

∫

Γαβµν(00q − q)G2(q)
∂

∂r
Iµνγδ(−qq; 00)

− 36

∫

∂

∂r

(

Iαβ;µν(00; q − q)
)

G2(q)Γµνγδ(−qq00)

+ 432

∫

Γαβγδ(00q − q)G2(q)

× ∂

∂r
(Iµν;ρτ (−qq; k − k))G2(k)Γρτγδ(−kk00) . (24)

It is clear from Eq. (17) that, up to terms of order U2
R, the difference between

Γ(00q − q) and Γ(0) consists only in the momentum transfer between vertexes.

Therefore, we have

Γαβµν(00q − q) ≈ 1

3
UR∆(αβµν)

− 4

3
U2
R(I(q, r) − I) (∆2(αµ;βν) + ∆2(αν;βµ)) , (25)

where we have made use of the tensor contraction formulas and integration symbol

given in Secs. 6 and 7. As long as the required order is reached, one may replace

a vertex by UR and take it off the integral; the contraction of spin indices in the

vertexes leads to the corresponding symmetric tensors. In order to calculate higher

order expansions, one iterates until the corresponding skeleton graph appears and

then replaces it by UR and then contract the spin indices. All the calculations below

are done in this way. According to Eq. (18), the derivative of I is

∂

∂r
Iαβ;µν(00; q − q) = −4

3
U2
R

∂

∂r
(I(q, r)) (∆2(αµ;βν) + ∆2(αν;βµ)) . (26)
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Inserting the above two formulas into Eq. (24) and neglecting the last term of order

U4
R in Eq. (24), we obtain

∂

∂r
Γαβ;γδ(0) = −4∆2(αβ; γδ)U

2
RI

′ + 64τ3(αβ; γδ)U
3
R(I

′
b − II ′).

Combining similar formulas in three channels is equivalent to carrying out

symmetrization. The result reads

U ′
R

UR

= −4(n+ 8)URI
′ + 64(5n+ 12)U2

R(I
′
b − II ′) . (27)

Calculating the integrals at dimension d = 4 − ǫ and comparing with the scaling

relation Eq. (22), we obtain the renormalized vertex:

UR =
2π2

n+ 8
ǫ

[

1 +
ǫ

2

(

6(3n+ 14)

(n+ 8)2
+ C − ln

4π

r

)]

. (28)

In calculating the above formula we have used the critical exponent η up to the

order ǫ2, easily obtainable from Γ(P ) to the order ǫ. C in Eq. (28) is the Euler

constant. If we do not assume the smallness of ǫ, UR is still inversely proportional

to (n+8); therefore, UR remains a first-order small quantity as long as the internal

freedom n is great.

In order to get the next order terms, we have to keep U4
R terms and take into

account the contribution of irreducible skeleton graph in Fig. 3(h). The result reads

U ′
R = −4(n+ 8)U2

RI
′ + 64(5n+ 22)U3

R

∫ [

∂

∂r
G2(q)(I(q, r) − I) +G2(q)

∂

∂r
I(q, r)

]

− 256(n2+20n+60)U4
R

∫ [

∂

∂r
G2(q)(I(q, r)−I)2+2G(q)2(I(q, r)−I)

∂

∂r
I(q, r)

]

− 256(3n2+22n+56)U4
R

∫ [

∂

∂r
G2(q)(I(q, r)−I)2+2G2(q)(I(q, r)−I)

∂

∂r
I(q, r)

]

− 1024(n2 + 20n+ 60)U4
R

∫ {

∂

∂r
G2(q)(I(q, r) − I)G(k)(G(k + q)−G(k))

+ G2(q)

[

∂

∂r
(G(k)G(k + q))(I(q, r) − I) +G(k)G(k + q)

∂

∂r
I(k, r)

]}

− 128(3n2 + 22n+ 56)U4
R

∫
[

2
∂

∂r
G2(q)(I(k + g, r)− I(k, r))G2(k)

+ G2(q)G2(k)
∂

∂r
I(k + q, r)

]

− 1536(5n+ 22)U4
RI

′
h . (29)

The terms in the above formula correspond to subgraphs (a), (b), (c1), (c2), (f),

(g) and (h) in Fig. 3. Comparing the graph and integral term by term, we can

summarize the rule of differentiation of skeleton graphs as follows: take derivatives

of the double propagators one by one and from the propagators that are not being

differentiated subtract a term which equals the zero-momentum term of that being
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Fig. 3.

differentiated. For example, the second term corresponds to subgraph Fig. 3(b),

when differentiating the first pair of reducible lines replace the right-side ring by

I(q, r) − I.

Merging and putting in order the integrals in Eq. (29), we introduce the following

symbols: A = rI ′, B = r(I ′b − II ′), E = r(I ′e − 2II ′b + I2I ′), F = r(I ′f − (IIb)
′ +

I2I ′). G = r(I ′g − 2I ′Ib) and H = rI ′h. Integrals in the parentheses here may

be divergent logarithmically. However, each symbol is a combination independent

of the momentum cut-off. Therefore, UR and all quantities derived from it are

explicitly independent of the cut-off. Using these symbols, we may write down the
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next order expansion that includes Eq. (27) as:

rU ′
R

Ur

=
(4− d− 2η)

2− η

= −4(n+ 8)URA+ 64(5n+ 22)U2
RB

− 512(2n2 + 21n+ 58)U3
RE − 1024(n2 + 20n+ 60)U3

RE

− 128(3n2 + 22n+ 56)U3
RG− 1536(5n+ 22)U3

RH .

(30)

Now we consider the skeleton graph expansion of Γ(P ).

The analysis of Γ(P ) is similar to that for UR. However, one must keep in

mind that in terms of momentum only one of the three channels describes forward

scattering and symmetrization must be carried out with respect to spin indices.

Therefore, in the definition Eq. (21) momentum and spin are not permutated to-

gether: there is only one channel for momentum, but for spin indices there are three

combinations, i.e.,

Γαβγδ

(

P

2

P

2
;−P

2
− P

2

)

=
1

3
(u0 +R)∆(αβγδ) +

1

3

[

Γαβ;γδ

(

P

2

P

2
;−P

2
− P

2

)

+ Γαγ;βδ

(

P

2

P

2
;−P

2
− P

2

)

+ Γαδ;βγ

(

P

2

P

2
;−P

2
− P

2

)]

. (31)

The rule of graphical differentiation of P is similar to that for r. Then, using

expansions similar to Eqs. (25) and (26) and comparing with the scaling relation

Eq. (23), we get

PΓ′(P )

Γ(P )
= 4− d− 2η = −4(n+ 8)Γ(P )AP + 64(5n+ 22)Γ2(P )BP , (32)

where AP = PI ′(P ), BP = P (I ′b − I(P )I ′(P )). Carrying out ǫ expansion to ǫ2, we

have

Γ(P ) =
2π2ǫ

n+ 8

[

1 +
ǫ

2

(

6(3n+ 14)

(n+ 8)2
+ C − 2− ln

4π

P 2

)]

. (33)

The last formula should be compared with Eq. (28).

So far in the derivation of Eqs. (30) and (32) no assumption has been made

concerning the spatial dimension d and the physical nature of smallness of UR and

Γ(P ), and no property of the bare coupling constant u0 has been used. If taking

u0 as a small quantity we can directly write down perturbation expansions for UR

and Γ(P ), then insert u0 back as expansion of UR (or Γ(P )), the results would

be identical to Eqs. (30) and (32). Due to the logical weakness of the necessity to

require the smallness of u0 and the lack of a natural way to get integral combinations

that are independent of momentum cut-off, we prefer skeleton graph expansions to

the “perturbation expansions” mentioned here.
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5. Calculation of Critical Exponents

Using the renormalized vertex UR at p = 0, one may calculate the critical exponents

γ and α, from the forward scattering amplitude Γ(P ) at r = 0 one may get the

exponent η.

First, consider the calculation of γ from the definition Eq. (14) of r after the

“mass renormalization”

r = G−1(0, r) = r0 − Σ(0, r) ∼ (r0 − r0c)
γ ∼ (T − Tc)

γ ,

it follows that if we introduce a “three-point vertex”:

Λ0 ≡ Λ0(0, r) ≡
dr

dr0
∼ γ(r0 − r0c)

γ−1 = γr
γ−1

γ ,

then on the one hand we have

Λ′
0

Λ0
=

1

r

(

1− 1

γ

)

,

on the other hand we get

Λg = 1− Λ0
∂

∂r
Σ(0, r) ,

where Σ(0, r) is the momentum-independent contribution from the self-energy part

made of exact propagators. Differentiating the self-energy part, or equivalently,

replacing every propagator G by −G2 one after another, i.e., attach to each line a

“photon” line with zero-momentum exchange. The three-point vertex comprises of

the sum of all these diagrams and satisfies the Bethe–Salpeter equation (see Fig. 4):

Λαβ
0 (p, r) = δαβ − 12

∫

Iαβµν(p− p; k − k)G2(k)Λµν
0 (k, r), (34)

where Λαβ
0 = Λ0(p, r)δαβ . Performing graphical differentiation in the same way as

we did in the previous section:

∂

∂r
Λαβ
0 (0, r)=−12

∫

∂

∂r
(Iαβ;µν(00; k − k))G2(k)Λµν

0 (k, r)

−12

∫

Γαβµν(00; k − k)
∂

∂r
G2(k)Λµν

0 (k, r)

+144

∫

Γαβµν(00; k−k)G2(k)
∂

∂r
(Iµν;γδ(k−k; q−q)G2(q)Λγδ

0 (q, r)) .

Fig. 4.
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Inserting Eqs. (25), (26), etc, into the above formula, iterating Λ0(k, r) once in

Eq. (34), and neglecting Λ0 and k dependence in higher-order terms, we combine

integrals and contract indices to get

rΛ′
0

Λ0
= 1− 1

γ
= −4(n+ 2)URA+ 96(n+ 2)U2

RB − 128(n+ 2)(n+ 8)U3
RE

− 512(n+ 2)(n+ 8)U3
RF − 384(n+ 2)2U3

RG . (35)

This formula maybe obtained by using the purely “perturbation theory” method

mentioned at the end of the previous section. Multiplying Eq. (30) by (n+2)/(n+

8) and subtracting Eq. (35), and inserting the UR obtained by solving Eq. (30),

we get

1− 1

γ
=

n+ 2

n+ 8
b+

2(n+ 2)(7n+ 20)

(n+ 8)3
Bb2

A2
− 2(n+ 2)b3

(n+ 8)4A3

[

(7n2 + 68n+ 168)E

+4(n2 + 24n+ 56)F − 8(n− 1)G+ 12(5n+ 22)H

− 8(5n+ 22)(7n+ 20)

n+ 8

B2

A

]

, (36)

where b = (4− d− 2η)/(2− η). So far we have only used the fact that UR is a small

quantity without digging into its origin. Therefore, Eq. (36) has a wider application

than the ǫ expansion. For the ǫ expansion, just insert the integrals and using the

expression (43) for η, we get

1− 1

γ
=

n+ 2

2(n+ 8)
ǫ +

3(n+ 2)(n+ 3)

(n+ 8)3
ǫ2

+(n+ 2)

[

55n2 + 268n+ 424

2(n+ 8)5
− 18ζ(3)(5n+ 22)

(n+ 8)4

]

ǫ3 . (37)

ζ(3) in the above formula is the Riemann ζ function. It is worth mentioning that

Eq. (37) is an expansion both in ǫ and in 1
n
. In Eq. (36) the coefficients of b2 and

b3 terms do not contain zeroth order of n. After calculating the integrals explicitly,

the ǫ3

n
terms in Eq. (37) cancel out. Whether the cancelation of the corresponding

powers of 1
n
continues in high orders requires further study. When the above results

were obtained in 1973 there appeared ǫ3 terms of γ calculated by other methods13

without revealing the details.

Using the three-point vertex, one can define the polarized ring which is propor-

tional to specific heat14:

cv ∼ (r0 − r0c)
−α ∼ r−

α
γ ∼ Π(r) = n

∫

G2(p)Λ0(p, r) . (38)

The right-hand side of the above formula may be calculated from skeleton graph

expansion

Λ0(p, r) = Λ0(0, r) + 96(n+ 2)U2
R

∫

G2(q)(I(p+ q, r) − I(q, r))Λ0(q, r) .
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Fig. 5.

In fact, this formula can easily be derived from Eq. (34). Then compare the result

with the consequence of the left-hand side

Π′′

Π′
= −1

r

(

1 +
α

γ

)

, (39)

we obtain

1 +
α

γ
= −rI ′′

I ′
+ 8(n+ 2)URA− 96(n+ 2)U2

Rr

[

I ′′g
I ′

−
I ′gI

′′

(I ′)2
− 2II ′

]

. (40)

When calculating the first term one should pay attention to the contribution of

Fig. 3(a) and (j). In the ǫ expansion there appears two momentum-independent

combination of integrals. The final result reads

α

γ
=

4− n

2(n+ 8)
ǫ+

n+ 2

(n+ 8)2

[

5

2
− 3(3n+ 14)

n+ 8

]

ǫ2 . (41)

Similar to Eq. (37), this formula is an expansion both in ǫ and
1

n
.

In order to calculate η, let r = 0 in the Dyson equation G−1 = p2 + r − Σ(p, r)

and compare with Eq. (2), we get p2−η = p2−Σ(p, 0). For four-point interaction the

irreducible self-energy Σ may be expressed via the four-point vertex,12 see Fig. 5(a).

Writing down the spin indices explicitly and ignoring terms independent of p, the

Dyson equation may be rewritten as

p2−ηδαβ = p2δαβ − 32u0∆(αγδρ)

∫

G(p− k)G(k − q)G(q)Γβγδρ(p− k, k − q, q,−p) .

Now we perform graphical differentiation in the same way as in the previous

section. Since the rightmost term is not I but the bare vertex u0, see Fig. 5(b), there

is no term corresponding to the third term in Eq. (24). Furthermore, the difference

between I and u0 should be deducted from the first term. From Eq. (18) we have

Iαγ;δρ(p,−q; k − p, q − k) =
u0

3
∆(αγδρ)− 4

3
Γ2(p− q)[I(k)∆2(αδ; γρ)

+I(p+ q − k)∆2(αρ; γδ)] .

Unlike the r 6= 0 and p = 0 limit, Γ(p−q) must be kept within the integral. Putting

in order and performing the contraction, we obtain

(2 − η)p1−η = 2p− 32(n+ 2)

∫

G(q)
∂

∂p
I(p− q)Γ2(p− q)
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+
128(n+ 2)(n+ 8)

3

∫

G(q)Γ3(p− q)
∂

∂p
[G(p− q)G(k − q)

× (I(k) + I(p+ q − k))− 2I2(p− q)] . (42)

If the first term in the expansion of Γ(p) does not depend on p (this is the case in

the ǫ expansion, see Eq. (33)), the differentiation with respect to p in the last term

may be taken out of the integral. Performing variable substitution, the two terms

in the square brackets cancel out and Eq. (42) looks formally as an expansion to

ǫ2. Inserting the expansion Eq. (33) and performing the integration, then compare

with

[G−1(p)]′′

[G−1(p)]′
=

1− η

p
,

which follows from Eq. (2), we get

η =
n+ 2

2(n+ 8)2
ǫ2 +

n+ 2

2(n+ 8)2

[

6(3n+ 14)

(n+ 8)2
− 1

4

]

ǫ3 . (43)

In the process of calculating η, we did not define a “vector three-point vertex”

Λi =
∂
∂p
G−1 analogous to Λ0, because it does not satisfy a Bethe–Salpeter equation

similar to Eq. (34).

6. The Coefficients of Diagrams

The calculation of diagram coefficients includes n = 1 and n > 1 cases, the latter

may be obtained from the former. For the parquet diagrams which are the basis

of skeleton graphs we develop a method to calculate the coefficients of complex

graphs.

6.1. Coefficients of n = 1 diagrams

The coefficient C(1) of a kth-order diagram at n = 1 is the total number of diagrams

with k vertexes and the corresponding internal and external lines. Its value is

C(1) =
N1N2

k!
, (44)

where combinatorial factor N1 is the number of diagrams at a fixed labeling of

vertexes, topological factor N2 is the number of nonequivalent diagrams obtained

by permutation of the labels. In order to calculate N1 we introduce a matrix rep-

resentation of diagrams, suggested by our colleague Dr. Fuque Pu. Each kth-order

diagram corresponds to a symmetric nonnegative real matrix, whose element aij
denotes the number of internal lines between vertexes i and j, the diagonal element

aii is twice the number of loops at the vertex i. A connected diagram corresponds

to an irreducible matrix. Suppose vertex i comes from a Wi-point vertex, then the

number of external lines is given by

fi = Wi −
k
∑

j=1

aij ≥ 0 ,
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Consequently,

N1 =
1

a11!a12! · · · a1k!a22! · · · a2k! · · · akk!

k
∏

j=1

Wi!(aii − 1)!!

fi!
. (45)

The topological factor is obtained from a case by case analysis and no general

algorithm has been formulated. For example, N1 = 72, N2 = 1, Ca(1) = 36 for

Fig. 3(a); N1 = 3456, N2 = 3, Cb(1) = 1728 for Fig. 3(b); N1 = (4!)4, N2 = 3,

Ch(1) = 41472 for the nonparquet diagram Fig. 3(h).

6.2. Products and contractions of fully and partially symmetric

unit tensors

In Eq. (11), we have used the fully symmetric unit tensor ∆αβγδ defined in Eq. (12).

The products and contractions (i.e., summation over repeated indices) of ∆(αβγδ)

appear frequently in the n > 1 high-order diagrams. The symmetry property of

any four-point diagram with fixed spin indices on external lines may be expressed

as Aδαβδγδ + Bδαγδβδ + Cδαδδβγ , corresponding to the three channels mentioned

before. There are in total three possibilities of indices permutation in this relation:

A = B = C, fully symmetric, denoted as (αβγδ); A 6= B = C (or similar cases),

invariant with respect to indices permutation within each group or to exchange

of two groups, denoted as (αβ; γδ); A 6= B 6= C 6= A, denoted as (α, β; γ, δ),

invariant with respect to simultaneous permutation of indices within each group

and ordered permutation of the two groups. All vertexes in the previous sections as

well as symbols used below are written by using these notations. All products and

contractions may easily be calculated. For example,

∆k(αβ; γδ) = ∆(αβ;µν)∆k−1(µν; γδ) = ∆1(αβ;µν)∆k−1(µν; γδ)

= Akδαβδγδ + 2k−1(δαγδβδ + δαδδβγ) ,

∆k(αγ;βγ) =
[

Ak + 2k−1(n+ 1)
]

δαβ ,

where Ak = [(n+ 2)k − 2k]/n, which may be derived by using induction. Skipping

various general expressions, we list those used in previous sections in Table 1.

P (n) in the last column of Table 1 comes from symmetrization. Summing over

all possible permutations of indices and dividing by the number of permutations,

the result is proportional to ∆(αβγδ)/3 with coefficient P (n) being a polynomial

of n. It is easy to see that when n > 1 P (n) enters into the coefficients of the

corresponding diagrams. For example, Fig. 3(a) is obtained from the contraction of

two bare vertexes

∆(αβµν)∆(µνγδ) = ∆2(αβ; γδ) ,

and it corresponds to one channel, another channel obtained by permutation ap-

pears in Fig. 3(b):

∆(αβµν)∆2(µγ; νβ) = τ3(αβ; γδ) .
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Table 1. Symmetric tensors and their contractions.

Tensor In Fig. 3 A B C P (n)

∆≡∆1(αβγδ) (h) 1 1 1 3
τ2 = ∆2(αβ; γδ) (d), (j) n+4 2 2 n+8

∆3(αβ; γδ) (c) n2+6n+12 4 4 n2+6n+20
∆4(αβ; γδ) (d) n3+8n2+24n+32 8 8 n3+8n2+24n+48
τ3(αβ; γδ) (b) 3n+10 n+6 n+6 5n+22
τ4(αβ; γδ) (e2) n2+10n+24 n2+6n+16 n2+6n+16 3n2+22n+56

ρ4(α, β; γ, δ) (e1) 8n+24 n2+8n+20 4n+16 n2+20n+60
ω4(αβ; γδ) (g), (i) 3n2+18n+32 2n+12 2n+12 3n2+22n+56
χ4(αβ; γδ) (f) n2+12n+28 4n+16 4n+16 n2+20n+60

In order to obtain the total coefficient of all three channels one carries out

symmetrization and produces the corresponding P (n). For a kth-order diagram

P (1) = 3k, because each bare vertex at n > 1 has three ways of spin propagation,

corresponding to the three channels in Eq. (12). Every kth order diagram becomes

3k diagrams and each spin loop brings about δαα = n. Therefore, the coefficient of

an n > 1 diagram is

C(n) = C(1)P (n)/3k . (46)

Examples: Ca(n) = 4(n + 8); Cb(n) = 64(5n + 22). The coefficient of nonparquet

diagram Fig. 3(h) must be calculated directly and it is

∆(αµνρ)∆(βρωσ)∆(γµτω)∆(δτνσ) = 3(5n+ 22)∆(αβγδ) .

Therefore, Ch(n) = 1536(5n+ 22).

6.3. Parquetry rules

We first consider the case n = 1. Suppose that a complex diagram decomposes into

two subdiagrams (x) and (y) according to the reducible channels, as given in Fig. 6

with symmetry property of the diagram shown symbolically. If the coefficients of

the subdiagrams are known to be Cx(1) and Cy(1), then

Cxy = [DxCx(1)] ∗ [DyCy(1)] ∗ (C4
2 )

2T . (47)

Here, the coefficient D reflects the weight of the subgraph channel. Figure 6(x) has

a weight D = 1/3 in the horizontal channel, and D = 2/3 in the vertical channel.

Figure 6(y) has weight D = 2/3 in the vertical channel, but in the horizontal

channel due to left–right asymmetry each parquet has weight 1/6. A fully symmetric

diagram has weight D = 1. If the original diagram has left–right symmetry then

T = 1, otherwise T = 2. The factor C4
2 = 6 is the number of combinations when

picking up two external lines in a four-point subgraph. Take, for example, Fig. 3(i),

it is the result of combining two Fig. 3(a), therefore

Ci(1) =

[

1

3
Ca(1)

]

∗
[

2

3
Ca(1)

]

× 72 = 20736 .
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Fig. 6.

When n > 1, we first consider a case with fixed spin indices. The coefficient of

the original graph is still given by Eq. (47), but when changing C(1) to C(n) in

Eq. (46), P (n) must be taken as that before the symmetrization. Only the final

result is subject to symmetrization. When the weight in the vertical channel is

D = 2/3, one may write down explicitly the two combinations of the spin indices

to be summed over and use D = 1/3 instead. Take again Fig. 3(i) as example,

[

1

3
Ca(1)

∆2(αβ;µν)

9

] [

1

3
Ca(1)

∆2(µγ; νδ) + ∆2(µδ; νγ)

9

]

× 72 = 256ω4(αβ; γδ) ,

yielding Ci(n) = 256(3n2 + 22n + 56) after symmetrization. Since the definition

of vertex part includes the symmetric tensor and the factor 1/3, calculation of the

coefficients of skeleton graphs reduces to that of the perturbation diagram coefficient

C(1). For example, the coefficients in Eq. (24) are Ca(1) = 36 and Cc(1) = 432.

7. Some Integrals

We list the integrals used in this work. These integrals are calculated in a

d-dimensional spherical coordinate system, expanded to the required power of ǫ.

In diverging integrals we introduce a momentum cut-off Λ and retain the nonvan-

ishing terms at Λ → 0. The subscripts of the following integrals are the same as

the labels in the corresponding diagrams. Usually the derivatives of some integrals

are easier to calculate than the integrals themselves. In the following formulas,

we have L = Λ/
√
r, the Euler constant C = 0.577216, the Riemann ζ function

ζ(3) = 1.202057, and an integral

C1 =

∫ ∞

1

lnx

x2 − x+ 1

dx

x+ 1
= 1.171954.

I(p, r) ≡ Ia(p, r)

≡
∫

G(q)G(p+ q) =
1

(4π)2

[

1 + 2 lnL+

√

p2 + 4r

p
ln

√

p2 + 4r − p
√

p2 + 4r + p

]

,
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I ≡ Ia(0, r)

=
1

(4π)2

{

2 lnL− 1 +
ǫ

2

[

(2 lnL− 1)(1− C + ln
4π

r
) +

π2

6
− 2(lnL)2

]}

,

(48)

I(p) ≡ Ia(p, 0) =
1

(4π)2

{

(2 ln
Λ

p
+ 1)[1 +

ǫ

2
(ln 4π − C)]

+ ǫ

[

3

2
− 2 ln p+ lnΛ + (ln p)2 − (lnΛ)2

]}

,

Ib(p, r) ≡
∫

q

G
(

q − p

2

)

G
(

q +
p

2

)

I(q, r) ,

Ib ≡ Ib(0, r) = − 1

(4π)4
[1 + C1 − 2(lnL)2] , (49)

I ′b ≡
d

dr
Ib(0, r)

=
1

(4π)4r

{

−2 lnL+ ǫ

[

C1 −
π2

12
+ 2

(

C − ln
4π

r
− 1

2

)

lnL+ (lnL)2
]}

,

I ′e =
1

(4π)6r
[1 + 2C1 − 4(lnL)2] , (50)

I ′f =
1

(4π)6r
[C1 − 2 lnL− 2(lnL)2] , (51)

I ′g =
1

(4π)6r
[2− 4(lnL)2] , (52)

I ′h = − 6

(4π)6r
ζ(3) , (53)

Ii ≡
∫

G3(k)I(q, r)[G(q + k)−G(q)] ,

I ′f =
1

(4π)6r

(

1

2
+ lnL

)

.

(54)

8. Generalized Homogeneous Functions and the Callan Symanzik

Equation

Consider a general function of, say, three variable f(x1, x2, x3). If under a scale

change in all dimensions xi → λxi, the function remains the same except for

multiplying by a numerical factor λn:

f(λx1, λx2, λx3) = λnf(x1, x2, x3) , (55)
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then f is a homogeneous function of order n. Differentiating both sides of Eq. (55)

with respect to λ and letting λ = 1, we get a partial differential equation, namely,

the Euler equation for homogeneous functions:
[

x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

]

f(x1, x2, x3) = nf(x1, x2, x3) . (56)

The expression in square brackets
∑

i xi

∂

∂xi

is called a dilation operator.

If the scale change is performed differently in different dimensions x1 → λα1x1,

x2 → λα2x2, x3 → λα3x3 and the function remains the same up to a common

factor λn:

f(λα1x1, λ
α2x2, λ

α3x3) = λnf(x1, x2, x3) , (57)

then f is a generalized homogeneous function. It satisfies a generalized Euler

equation
[

α1x1
∂

∂x1
+ α2x2

∂

∂x2
+ α3x3

∂

∂x3

]

f(x1, x2, x3) = λnf(x1, x2, x3) . (58)

The dilation operator becomes

α1x1
∂

∂x1
+ α2x2

∂

∂x2
+ α3x3

∂

∂x3
.

Many scaling relations may be derived if one assumes that thermodynamic functions

near critical points are generalized homogeneous functions.15

If, in addition, the function contains a parameter R which depends on the factor

λ during the scale change, i.e., R → R(λ). Then there appears a term in the

generalized Euler equation as well as in the dilation operator:
[

∑

i

αixi

∂

∂xi

+ β
∂

∂R

]

f(x1, x2, x3) = λnf(x1, x2, x3) , (59)

where a coefficient β is introduced:

β =
dR

dλ

∣

∣

∣

∣

λ→0

. (60)

This is an elementary derivation of the Callan–Symanzik equation without making

use of any knowledge of field theory. At critical point, the correlation length diverges

and the scale change does not affect the generalized function at all. In other words,

at the critical point β = 0. The critical exponents may be calculated from the zero

of the coefficient function β in the Callan–Symansik equation. Had we been aware

of this elementary derivation of Callan–Symansik equation 40 years ago we could

have explained the relation of our skeleton graph expansion to other field theory

calculation of critical exponents then.

Note: In the Reference list, we included only those available when writing paper

of Ref. 9 except for Ref. 1.
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