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Kenneth Wilson’s Nobel Prize winning breakthrough in the renormalization group theory
of phase transition and critical phenomena almost overlapped with the violent “cultural
revolution” years (1966-1976) in China. An unexpected chance in 1972 brought the
author of these lines close to the Wilson—Fisher e-expansion of critical exponents and
eventually led to a joint paper with Lu Yu published entirely in Chinese without any
English title and abstract. Even the original acknowledgment was deleted because of
mentioning foreign names like Kenneth Wilson and Kerson Huang. In this article I will
tell the 40-year old story as a much belated tribute to Kenneth Wilson and to reproduce
the essence of our work in English. At the end, I give an elementary derivation of the
Callan—Symanzik equation without referring to field theory.
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1. Introduction

There has never been a tower of ivory for scientists working in a developing coun-
try. In his report to the South Commission' Abdus Salam reproduced a figure by
Dadison Frame. The figure showed the annual publication of scientific and techno-
logical papers versus GNP for the year 1973. Most points fell around two straight
lines, that for developed and developing countries, respectively. There was, however,
a striking lonely outlier far below many least-developed countries. It represented
China.

In the summer of 1972, an unthinkable opportunity threw four Chinese physi-
cists into the Canadian Congress of Physicists held in Edmonton, Alberta. Michael
Fisher talked about his joint work with Kenneth Wilson on e-expansion of the
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critical exponents.?2 With my poor English at that time, I could only appreciate
the importance of the renormalization group approach. Upon return to Beijing, I
immediately read the two 1971 papers of Wilson.?#

I must explain how could I get access to scientific literature in a time when all
libraries were closed. At that time, the Institute of Physics was led by represen-
tatives of the People’s Liberation Army (PLA). In order to prepare for “science
reform” they appointed a group of scientists to do investigations on physics re-
search in China and abroad. This allowed me to get into the closed libraries. Xerox
machine was something unheard of. We had to make notes by hand.

The first two papers of Wilson were quite hard to grasp. Early 1973, Professor
Kerson Huang paid a visit to Beijing. In a discussion, he mentioned that Kenneth
Wilson had given a series of lectures in Princeton and promised to write to Kenneth.
Soon, Wilson sent us a Cornell preprint® which later appeared in Physics Reports.®
The “later” here meant at least half a year delay or more as the libraries had only
surface mail subscriptions.

After digesting the available information, our goal was clear: calculate the € ex-
pansion to high powers of € in order to compare with experimental measurements
and to check the scaling relations among critical exponents. An approach by com-

78 came to my attention. Skeleton graphs

paring skeleton graph with scaling relation
were closer to my heart as more than 10 years ago in one of the Landau seminars in
Moscow 1 listened to K. A. Ter-Martirosyan talking about applying skeleton graph
expansion to meson scattering. The authors of Refs. 7, 8 considered the special
case of n = 2 Bose systems and their result could not be extended to general n and
higher-orders. Especially, the analysis at the critical point was lacking. I undertook
to study the general n case.

There was a theoretical division in the Institute of Physics, of which I was the
Deputy Head. The division was created in 1959 upon reflection of the “Great Leap
Forward”. In 1969, it was disbanded by the PLA officers as a “typical example of
isolation of theory from practice”. In 1973 I succeeded in restoring a small theoret-
ical group in the laboratory of magnetism. Another important fact that allowed me
to do some science consisted in that I was nailed to the bed by lumbar disc rupture.
Our group member Lu Yu came and worked at my bedside and then reported to
the group. Eventually, Yu was the only one who could catch up with the work.

The official journal of the Chinese Physical Society Acta Physica Sinica stopped
publication for more than seven years, from the fall of 1966 to the end of 1973. It
was decided to restore publication from January 1974. Our paper? arrived at the
editorial office on 5 December 1973 and appeared in print only in May 1975. The
paper did not have an English title and abstract. Originally, we thanked Kerson
Huang and Kenneth Wilson for helping with the Princeton lecture notes. However,
we were asked for the political attitude of these foreigners and we decided to delete
the whole acknowledgment. In the spring of 1977, a group of solid state physicists
from the Chinese Academy of Sciences visited France and Germany for the first time
after many years of isolation from the outside world. After my talk at Orsay on
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Skeleton graph expansion of critical exponents

closed-form approximation for the three-dimensional Ising model, I had a discussion
with Eduard Brézin by pointing to formulas in our Chinese reprint. This was the
start of our many-decade friendship with Eduard Brézin.

2. Critical Exponents and Scaling Relations

In continuous phase transitions, thermodynamic functions and their first derivatives
are continuous, but high-order derivatives may be singular at the transition point
T.. The behavior of thermodynamic quantities near critical point is described by
various critical exponents. For example, the singularity of specific heat near a critical
point is described by the exponent a:

oy~ (T=T.)" (T>T,) (1)

The behavior of spin or density correlation function near the critical point is
better expressed via their Fourier transform as

GP —0,T=T.) ~ P2, (2)

which involves another exponent 7.
Another limit of the same correlation function is associated with the initial
magnetic susceptibility (or isothermal compressibility) x:

Xy ~GP =0T =T, +0)~(T-T.)", 3)

where a third exponent ~ is introduced.

Historically, various phase transition analyses were unified in the Landau mean
field theory which yields the same exponents: & = 0 (finite discontinuity), v = 1,
and n = 0.

The situation was more or less satisfactory until the mid 1960s when precise
experimental measurements and exact statistical models all showed that there were
definite deviations of critical exponent values from the mean field theory. Neverthe-
less, some relations between the critical exponents turned out to be holding. Leo
Kadanoff'® and Michael Fisher!'! called attention of the statistical physics commu-

10,11

nity to this challenge. Unfortunately, their well-known reviews were overlooked

by Chinese physicists as the “cultural revolution” broke out on 1st June 1966.

3. Classical Field Theory Representation of Statistical Problem
Near Critical Point

We adopt the model of Wilson.# Consider the interaction of classical spins with
n components in a d-dimensional lattice. Here, “spin” is nothing but the order
parameter in theory of continuous phase transition. In the calculation of statistical
partition function, the summation goes over all states {S} from nearest-neighbor
lattice points

E K o ca J
Z—Zexp(—k—T)—Zexp EZSW mti | K:k:_T’ (4)
{s} {s} m,i

1430008-3



B. Hao

where J denotes the exchange integral, m represents the position vector of the cell,
i represents the relative position vector of the nearest neighbors (in what follows
we do not use boldface for vectors). The repeated spin superscript « performs
summation from 1 to n. By introducing a convergent factor —%S?,LS?,L and treating
S as a variable taking continuous values, the summation in Eq. (4) may be replaced
by integration. Furthermore, changing the lattice point function S, to a function
of continuous medium S(z) and absorbing K by rescaling S, we get

7 (/ DS) exp {—% /x((vS)Q + 7«032)} Cre = % 2. (5)

From now on, functional integration over infinite function system as well as ordinary
d-dimensional integration will be represented by shorthand notations:

(o)« (o). [ o [ -]

The gradient term (575)? comes from nearest neighbor interaction. Performing
Fourier transformation S(x) = fq e, and neglecting the common factor which
appears during function substitution in the functional integral, we have

7= ( / Da) exp(Ho) (7)

1
Hy=— / (4% +ro)ola®, . (8)
q

Hy is the Hamilton function of a free classical field. It is the simple Gaussian
model in statistics. All statistical averages are Gaussian averages. For example,
spin correlation function is nothing but the propagator of the classical field:
§(1+2

s, )
qy + 1o

where 1,2 are shorthand for the momenta ¢, g2. We know the temperature depen-

(6)

and

(0%05) = Golq1,70)8(1 + 2)6ap =

dence near critical point from Eq. (3):

1
X~ ~ Go(0,70) = . ro~ (T'—T.)". (10)

In the Gaussian model, all high even-order spin correlation functions decompose
into combinations of second-order correlation functions, and odd-order correlation
functions vanish. This decomposition corresponds to Wick theorem in field theory.

Wilson observed that critical exponents of Gaussian model coincide with that
of mean-field theory. Spin distribution function in Gaussian model has a maximum
at S = 0, far departing from general statistical models. However, if one inserts a
fourth-order term into the convergence factor of Eq. (5), one may go beyond the
mean field theory. Then, the Hamilton function reads:

H=Hy,+ H; = H, — %A(aﬁyé)/ofogagag(ﬂl +2+3+4+4), (11)
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Skeleton graph expansion of critical exponents

where ug corresponds to the coupling constant in field theory with ¢* interaction,
A(apy9) is a fully symmetric unit tensor:

A(apy6) = bapdys + day0ps + 0asdpy - (12)

Various products and contractions of Aafvyd (i.e., summations over repeated
indices) frequently appear in the calculation of high-order terms. We postpone
these monotonic yet useful technicalities to Sec, 6.2.

The average of any product A of field functions

(A) = (Aexp(Hr))o

{exp(H))o

may be decomposed and one can prove a connected-graph expansion theorem.
Detailed enumeration of diagram coeflicients and calculations of integrals will be
given in Secs. 6 and 7.

In this model, propagators contain temperature, but bare interactions do not
depend on temperature. High-order vertexes depend on temperature by way of
propagators. Consequently, the momentum-independent part in self-energy diagram
leads to a shift of critical point. In order to take into account this point, it is better
to include this part of contribution from the self-energy diagram into 9. This “mass
renormalization” process may be realized by way of a cancelation term well-known
in field theory, i.e., rewriting Eq. (11) to

1 1 U
=5 [@+noton = 5 [n-riatot, ~ 2aas) [otofoiol,
(13

and requiring that the exact propagator G(g,r) satisfies a condition similar to
Eq. (10) at ¢ — 0:

Yo ~ G(0,7) = % ~ (T =T, (14)

Momemtun-independent part in self-energy diagram cancels out with the second
term in Eq. (13), the cancelation equation defines . When calculating a complex
diagram containing self-energy part, one must introduce a subtraction term as ex-
plained in details in Eq. (54) in Sec. 6. In this paper, we use the same notation
for the exact propagator and for the free propagator G(q,r) = (¢*> + r)~! after
“mass renormalization”, their difference is clear from the context. Skeleton graphs
are those composed of exact propagators.

4. Skeleton Graph Analysis of Four-Point Vertex

The four-point vertex T*#79(1234) discussed in this section is four-spin correlation
function excluding disconnected diagrams and amputating single-particle external
lines. Usually the r dependence is not written out explicitly. Since the ¢’s are
commutative classical quantities, I' is fully symmetric with respect to both spin
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Fig. 1.

indices and momentum. We bind together the spin superscript and momentum,
i.e., binding 1 < «, 2 <> 3, etc. There are 4! permutations. In fact, they should be
symmetrized separately, leading to (4!)? permutations. Later on, when discussing
the forward scattering amplitude at » = 0, we have to symmetrize the spin super-
scripts separately.

The 4! diagrams obtained from a four-point vertex by permutating external lines
are divided into three groups: (12;34), (13;24) and (14;23), corresponding to the
s, t and u channels in field theory. Some diagrams are reducible in one channel,
i.e., becoming disconnected parts by cutting two internal lines; some are entirely
irreducible. Diagrams reducible in one channel are irreducible in the other two
channels. A complex diagram may be reducible in one channel, its subdiagrams
may be reducible in other channels. If all subdiagrams are reducible in one or
another channel, then the complex diagram is called a parquet diagram. The total
of diagrams, reducible in one channel, is denoted as, e.g., T®#7°(12;34). The total
of diagrams, irreducible in one channel, is denoted as 1%7%(12; 34), represented by
squares in Fig. 1. T'*%7% may be obtained from I*%7% by iteration, as shown in
Fig. 1.

If taking out the leftmost square and summing over the remaining I, we get a
fully symmetrized total vertex ['*#7%(—5 — 634):

of79(12; 34) = —36/10@””(12; 56)G(5)G(6)TH (=5 — 634) . (15)

d-functions ensuring momentum conservation are not written out explicitly in the
above formula. The calculation of the numerical coefficient is given in Sec. 6. The
total vertex is expressed via the sum R of vertexes reducible in some channel and
diagrams irreducible in all three channels, the lowest order diagram of the latter is
the 4-point diagram in Fig. 3(h):

ToB79(1234) = %(Uo + R)A(afvd) + %I‘aﬁwé(n; 34)

1 1
+ gra%ﬁé(m; 24) + gra&f”(m; 23). (16)
Inserting Eq. (15) into the above equation, we get Fig. 2.
1 .
P70(1234) = 2 (uo + R)A(aBy9) — 12 / 1974 (12; 56)G(5)G(6)T7 (=5 — 634)
—12 /I@W”(B; 56)G(5)G(6)I"P%(—5 — 624)

1430008-6



Skeleton graph expansion of critical exponents

—
w
—
S

Fig. 2.

- 12/["‘5;’”(14;56)G(5)G(6)F“"57(—5 —623). (17)
If separating out a part, irreducible in one channel:

1°77°(12; 34) %(uo + R)A(afy0) 12 / %747 (13:56)G(5) G (6)I"7° (=5 — 624)

— 12/IQBW(M;56)G(5)G(6)P~”55(—5—623), (18)
then Eq. (17) may be written as an ordinary Bethe—Salpeter equation:
[eA79(1234) = 19579(12; 34) — 12/[0@””(12; 56)G(5)G(6)IH70(—5 — 634) .

(19)

One can write down similar equations using I irreducible in the other two channels.
In the theory of critical phenomena, we have to discuss two limits of the total
four-point vertex:

(1) The long wave length limit P = 0 which becomes important due to divergence
of the correlation length. We need the vertex Ugr near the critical point » — 0:

1
eA7°(0000;7) = 3UrA(af9). (20)
(2) The forward scattering amplitude I'(P) at the critical point » = 0 in the P — 0
limit:
PP P P 1
resvs (. 2 T _ Ip(p)A 21
(553 -3 ) = 3T (PIAEs) (21)

By a skeleton graph analysis we can obtain 88% and 61(;(15) from the above

definitions. Further comparison with the scaling relation®
Uiy, A1 -

and
or'(P)
P
one determines entirely Ur and T'(P) contained in the expression. A pivotal point
here consists in that ug is not required to be a small quantity beforehand, but Ugr

/T(P)=(4—d=2n)/P, (23)
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and T'(P) are indeed small when the physical system approaches four dimension
(small €) or the internal degree of freedom n is great.

We first consider the skeleton graph expansion of Ug.

For the sake of clarity, we first keep terms up to U }3%. Putting external momen-
tum to zero and performing “graphical differentiation”: i.e., first take derivative
of propagators in between the irreducible parts, due to the arbitrariness of their
positions the infinite series on both sides again sum up to I'; then take derivatives
of I at the two ends and in the middle. In this way, we obtain

0

> il 2EVERTY (0)

0
I‘\aﬁltl/ Ooq _ q)a (GQ( )) I“l},l/’)’é(_qqoo)

— 36

- 36 / D (00g — )G (g) o 17 (—q4;00)
/ (197 (005 — q)) G ()T (—qq00)

+432 / r%7%(00q — q)G*(q)

x5 O (1107 (Zqqs & — k) G2(k)TP™ (—kkO0) . (24)

It is clear from Eq. (17) that, up to terms of order U3, the difference between
I'(00g — q) and I'(0) consists only in the momentum transfer between vertexes.
Therefore, we have

LoPHY(00g — q) ~ ~UrA(afuv)

~ SUR(Ia,) — T) (Balops ) + Aafows ) . (29)
where we have made use of the tensor contraction formulas and integration symbol
given in Secs. 6 and 7. As long as the required order is reached, one may replace
a vertex by Ur and take it off the integral; the contraction of spin indices in the
vertexes leads to the corresponding symmetric tensors. In order to calculate higher
order expansions, one iterates until the corresponding skeleton graph appears and
then replaces it by Ur and then contract the spin indices. All the calculations below
are done in this way. According to Eq. (18), the derivative of I is

D 1 (005 — 4) =~ SUR - (1(q,1) (alops B) + Aafows Bu) . (26)
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Skeleton graph expansion of critical exponents

Inserting the above two formulas into Eq. (24) and neglecting the last term of order
U} in Eq. (24), we obtain
9 afvd 2 7/ 37/ /
gf 19(0) = =49 (aB;y0)Upl" + 6413 (af;v0)Up (L, — I1).
Combining similar formulas in three channels is equivalent to carrying out
symmetrization. The result reads
U _
Ur
Calculating the integrals at dimension d = 4 — € and comparing with the scaling
relation Eq. (22), we obtain the renormalized vertex:
272 € (6(3n+14) 47
Ur = 14—+ C—-In— || . 28
" n+86[+2<(n+8)2+ o (28)
In calculating the above formula we have used the critical exponent 1 up to the
order €2, easily obtainable from I'(P) to the order e. C' in Eq. (28) is the Euler
constant. If we do not assume the smallness of €, Uy is still inversely proportional

—4(n + 8)UrI' +64(5n + 12)Us(I, — II'). (27)

to (n+8); therefore, Ur remains a first-order small quantity as long as the internal
freedom n is great.

In order to get the next order terms, we have to keep Uj‘f% terms and take into
account the contribution of irreducible skeleton graph in Fig. 3(h). The result reads

Up = —4(n + 8)URI" + 64(5n + 22)U} / {%GQ(q)(I(q, r)—1I)+ Gz(q)a%f(q, 7“)}

- 256(n%+ 200+ 60)U} [ | 5 Gala) Taur) - DP42610) )~ 1) -(a.7)|

—256(3n2+22n+56)U;§/[%GQ(q)(I(q,r)—1)2+2G2(q)(I(q,r)—I)a%I(q,r)]

—1024(n? + 200 + 60)U4 / {%GQ(q)(I(q, r) — DG () (G + q) — G(k))

60 |5

S GG+ D)(T(a.r) = 1) + GG + )51k |

or

—128(3n* 4+ 22n + 56)Ux / [2%(;2((;)(1(1@ +g,7) — I(k,7))G?(k)

+ GQ(q)GQ(k)gl(k +4q, r)] — 1536(5n + 22)UR 1}, . (29)

The terms in the above formula correspond to subgraphs (a), (b), (c1), (c2), (f),
(9) and (h) in Fig. 3. Comparing the graph and integral term by term, we can
summarize the rule of differentiation of skeleton graphs as follows: take derivatives
of the double propagators one by one and from the propagators that are not being
differentiated subtract a term which equals the zero-momentum term of that being
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(a) (b) ()
o [) §§>@
@ (e0) )
>N
® @) ®
) o

differentiated. For example, the second term corresponds to subgraph Fig. 3(b),
when differentiating the first pair of reducible lines replace the right-side ring by

I(qu) -1

Merging and putting in order the integrals in Eq. (29), we introduce the following
symbols: A =rI', B=r(I)—II'), E = r(I, — 211} + I*I'), F = r(ly — (1) +
I’I'). G = r(I, — 2I'l;) and H = rl;. Integrals in the parentheses here may
be divergent logarithmically. However, each symbol is a combination independent

of the momentum cut-off. Therefore, Ur and all quantities derived from it are

explicitly independent of the cut-off. Using these symbols, we may write down the
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next order expansion that includes Eq. (27) as:
Ul (4—d—2p)
U, 2—n
—4(n+8)URA + 64(5n + 22)U2B
—512(2n? + 21n + 58)UR E — 1024(n? + 20n + 60) U3 E
—128(3n? + 22n + 56)U3G — 1536(5n + 22) U3 H .

(30)

Now we consider the skeleton graph expansion of I'(P).

The analysis of I'(P) is similar to that for Ugr. However, one must keep in
mind that in terms of momentum only one of the three channels describes forward
scattering and symmetrization must be carried out with respect to spin indices.
Therefore, in the definition Eq. (21) momentum and spin are not permutated to-
gether: there is only one channel for momentum, but for spin indices there are three
combinations, i.e.,

Te87d (55 P E) = l(uo + R)A(aBvd) + 1 [Faﬁwé (EE P E)

22 2 2 3 3 22 2 2
wss (PP P P\ .. (PP P P
R e RGeS | (1)

The rule of graphical differentiation of P is similar to that for r. Then, using
expansions similar to Eqgs. (25) and (26) and comparing with the scaling relation
Eq. (23), we get

PI(P)

T 4—d—2n=—4(n+8)T(P)Ap + 64(5n + 22)I'*(P)Bp , (32)

where Ap = PI'(P), Bp = P (I} — I(P)I'(P)). Carrying out € expansion to €2, we
have

r(P):sf; [1+§<%+c-2—m%ﬂ. (33)

The last formula should be compared with Eq. (28).

So far in the derivation of Egs. (30) and (32) no assumption has been made
concerning the spatial dimension d and the physical nature of smallness of Ur and
I'(P), and no property of the bare coupling constant uy has been used. If taking
ug as a small quantity we can directly write down perturbation expansions for Ur
and T'(P), then insert ug back as expansion of Ugr (or T'(P)), the results would
be identical to Egs. (30) and (32). Due to the logical weakness of the necessity to
require the smallness of 1 and the lack of a natural way to get integral combinations
that are independent of momentum cut-off, we prefer skeleton graph expansions to
the “perturbation expansions” mentioned here.
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5. Calculation of Critical Exponents

Using the renormalized vertex Ugr at p = 0, one may calculate the critical exponents
v and «, from the forward scattering amplitude I'(P) at 7 = 0 one may get the
exponent 7.

First, consider the calculation of v from the definition Eq. (14) of r after the
“mass renormalization”

r=G 10,r) =ro — 2(0,7) ~ (ro — roc)” ~ (T —T.)7,
it follows that if we introduce a “three-point vertex”:

dr a1
Ao = AO(O,r) = d_ro ~ 'y(ro — 7”05)7_1 =r -,

then on the one hand we have
Aj 1 ( 1)
U [
ANy 7 5y

Ag=1-— AogZ(O,r),

on the other hand we get

where (0, r) is the momentum-independent contribution from the self-energy part
made of exact propagators. Differentiating the self-energy part, or equivalently,
replacing every propagator G by —G? one after another, i.e., attach to each line a
“photon” line with zero-momentum exchange. The three-point vertex comprises of
the sum of all these diagrams and satisfies the Bethe-Salpeter equation (see Fig. 4):

AS2 (p,r) = G — 12 / I958 (p — pi ke — R)GP(R)AL (k. ), (34)

where AgB = Ao(p,7)0ap. Performing graphical differentiation in the same way as
we did in the previous section:

SEAS (0, = =12 [ S (1P 005k = )G (AL (ko)

12 / B (00; s — k;)%GQ(k)A{)“’(k, r)

+144/r“f3ﬂ”(oo; k—k)GQ(k;)g(IWWé(k:—k; a—q) G2 (A (q,7)).

}:>+]:E?=> +):D+'“+I:UI"'ID+"'

Fig. 4.
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Inserting Egs. (25), (26), etc, into the above formula, iterating Ag(k,r) once in
Eq. (34), and neglecting Ag and k dependence in higher-order terms, we combine
integrals and contract indices to get
’I“A6 1 2 3
T = 1l- 5 = —4(n+2)UrA+ 96(n+ 2)UrB — 128(n+ 2)(n + 8)URE
0
—512(n+ 2)(n + 8)UgF — 384(n + 2)* UG (35)

This formula maybe obtained by using the purely “perturbation theory” method
mentioned at the end of the previous section. Multiplying Eq. (30) by (n+2)/(n +
8) and subtracting Eq. (35), and inserting the Ug obtained by solving Eq. (30),
we get

1 n+2  2(n+2)(Tn+20) Bb>  2(n+2)b? 5
1— == — 168)E
ST T T mtsE A (nrspas |7 T TI6s)
+4(n? + 24n + 56)F — 8(n — 1)G + 12(5n + 22) H
_ 8(5n +22)(7n + 20) B>
n+8 Al

(36)

where b = (4 —d —2n)/(2 —n). So far we have only used the fact that Ug is a small
quantity without digging into its origin. Therefore, Eq. (36) has a wider application
than the e expansion. For the e expansion, just insert the integrals and using the
expression (43) for n, we get

1 n+2 3(n—|—2)(n—|—3)62

T T msp
55n2 + 268n + 424 18¢(3)(5n +22)] ,
+(n+2) mtsr  masr ¢ G0

¢(3) in the above formula is the Riemann ¢ function. It is worth mentioning that
Eq. (37) is an expansion both in € and in 1. In Eq. (36) the coefficients of b? and
b3 terms do not contain zeroth order of n. After calculating the integrals explicitly,
the % terms in Eq. (37) cancel out. Whether the cancelation of the corresponding
powers of % continues in high orders requires further study. When the above results
were obtained in 1973 there appeared €* terms of v calculated by other methods!?
without revealing the details.

Using the three-point vertex, one can define the polarized ring which is propor-

tional to specific heat!4:
Cy~ (g —Toe) " ~ P~ I(r) = n/GQ(p)Ao(p, r). (38)

The right-hand side of the above formula may be calculated from skeleton graph
expansion

Ao(p. ) = Ao(0,7) + 96(n + 2)U3 / C(@)I(p+a.7) — Ig,r)Ao(a.r) .
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In fact, this formula can easily be derived from Eq. (34). Then compare the result
with the consequence of the left-hand side

1 1 o
— - (1+=
S ( ; W) , (39)
we obtain
a r 7 ) I// I/I//
1+ N =7 +8(n+2)UrA —96(n+2)Ugr {I—g/ — (;,)2 - QH/] . (40)

When calculating the first term one should pay attention to the contribution of
Fig. 3(a) and (j). In the e expansion there appears two momentum-independent
combination of integrals. The final result reads
« 4—n . n+2 [5 3Bn+14)] ,
— = € - — €
v 2n+8)  (n+8)? |2 n+8

(41)

1
Similar to Eq. (37), this formula is an expansion both in ¢ and —.

In order to calculate 7, let » = 0 in the Dyson equation G‘ln: p?+7r—X(p,r)
and compare with Eq. (2), we get p>~" = p?—(p, 0). For four-point interaction the
irreducible self-energy ¥ may be expressed via the four-point vertex,!? see Fig. 5(a).
Writing down the spin indices explicitly and ignoring terms independent of p, the
Dyson equation may be rewritten as

P* "6ap = p*Oap — 32qu(a75p)/G(p — k)G(k — q)G(q)T""°(p — k,k — q,q,—p) .

Now we perform graphical differentiation in the same way as in the previous
section. Since the rightmost term is not I but the bare vertex ug, see Fig. 5(b), there
is no term corresponding to the third term in Eq. (24). Furthermore, the difference
between I and ug should be deducted from the first term. From Eq. (18) we have

. U 4
I (p, —q;k — p,q — k) = goA(avép) - gTQ(p — QI (k)Az(ad;vp)

+1(p+q—k)Az(ap;v9)].

Unlike the r # 0 and p = 0 limit, I'(p — ¢) must be kept within the integral. Putting
in order and performing the contraction, we obtain

2-np""=2p-32(n+ 2)/G(q)a%f(p —I*(p—q)
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MELURETUER) /G@pa(p_q)a% G~ )Gk — )

x(I(k)+I(p+q—Fk)) —2I*(p—q)]. (42)

If the first term in the expansion of I'(p) does not depend on p (this is the case in
the € expansion, see Eq. (33)), the differentiation with respect to p in the last term
may be taken out of the integral. Performing variable substitution, the two terms
in the square brackets cancel out and Eq. (42) looks formally as an expansion to
€2. Inserting the expansion Eq. (33) and performing the integration, then compare
with
G )" _1-7m
(G (p)) p
which follows from Eq. (2), we get
oon+2 n+2 [6(Bn+14) 1] 4
1= 2 +82° T 2(n+38) { n+8?2 1]
In the process of calculating 7, we did not define a “vector three-point vertex”
A, = B%G_l analogous to Ag, because it does not satisfy a Bethe-Salpeter equation
similar to Eq. (34).

(43)

6. The Coefficients of Diagrams

The calculation of diagram coefficients includes n = 1 and n > 1 cases, the latter
may be obtained from the former. For the parquet diagrams which are the basis
of skeleton graphs we develop a method to calculate the coefficients of complex
graphs.

6.1. Coefficients of n = 1 diagrams

The coefficient C(1) of a kth-order diagram at n = 1 is the total number of diagrams
with k vertexes and the corresponding internal and external lines. Its value is
N7 N.
cy =22 (44)
where combinatorial factor Nj is the number of diagrams at a fixed labeling of

vertexes, topological factor Ns is the number of nonequivalent diagrams obtained

by permutation of the labels. In order to calculate N7 we introduce a matrix rep-
resentation of diagrams, suggested by our colleague Dr. Fuque Pu. Each kth-order
diagram corresponds to a symmetric nonnegative real matrix, whose element a;;
denotes the number of internal lines between vertexes ¢ and j, the diagonal element
a;; is twice the number of loops at the vertex ¢. A connected diagram corresponds
to an irreducible matrix. Suppose vertex ¢ comes from a W;-point vertex, then the
number of external lines is given by

k
fi:Wi_ZaijZOa
=1
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Consequently,

k
1 Wz'(a” - 1)”

Ny = . 45

' an!"'akk!j]‘:_‘[l (45)

airlaig! - - aglags!- - il

The topological factor is obtained from a case by case analysis and no general
algorithm has been formulated. For example, N7 = 72, Ny = 1, C,(1) = 36 for
Fig. 3(a); N1 = 3456, Ny = 3, Cy(1) = 1728 for Fig. 3(b); Ny = (4D)*, Ny = 3,
Cr(1) = 41472 for the nonparquet diagram Fig. 3(h).

6.2. Products and contractions of fully and partially symmetric
unit tensors

In Eq. (11), we have used the fully symmetric unit tensor A*?7® defined in Eq. (12).
The products and contractions (i.e., summation over repeated indices) of A(af~d)
appear frequently in the n > 1 high-order diagrams. The symmetry property of
any four-point diagram with fixed spin indices on external lines may be expressed
as Adapdys + Boaydgs + Cdasdpy, corresponding to the three channels mentioned
before. There are in total three possibilities of indices permutation in this relation:
A = B = C, fully symmetric, denoted as (afv0); A # B = C (or similar cases),
invariant with respect to indices permutation within each group or to exchange
of two groups, denoted as (af;79d); A # B # C # A, denoted as (a, 8;7,9),
invariant with respect to simultaneous permutation of indices within each group
and ordered permutation of the two groups. All vertexes in the previous sections as
well as symbols used below are written by using these notations. All products and
contractions may easily be calculated. For example,

Ar(af;vd) = A(af; pv) Ap—1 (pv;0) = Ar(aB; pv) A1 (pv; v9)
= Akbaplys + 2871 (day 085 + dasdpy) ,
Ag(ay; By) = [Ax + 281 (n+1)] dag ,

where Ay = [(n + 2)* — 2¥]/n, which may be derived by using induction. Skipping
various general expressions, we list those used in previous sections in Table 1.

P(n) in the last column of Table 1 comes from symmetrization. Summing over
all possible permutations of indices and dividing by the number of permutations,
the result is proportional to A(afvd)/3 with coefficient P(n) being a polynomial
of m. It is easy to see that when n > 1 P(n) enters into the coefficients of the
corresponding diagrams. For example, Fig. 3(a) is obtained from the contraction of
two bare vertexes

Alafuv)A(uryd) = Az(af;v9),

and it corresponds to one channel, another channel obtained by permutation ap-
pears in Fig. 3(b):

Alappuv) Ay (uy; vB) = m3(af;v0).
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Table 1. Symmetric tensors and their contractions.

Tensor In Fig. 3 A B C P(n)
A=A (afyd) (h) 1 1 1 3
7o = Aa(aB;yd)  (d), (j) n+4 2 2 n+8
As(aB;~0) () n?4+6n+12 4 4 n24+6n420
Ay(aB;~o) (d) n3+8n24-24n+32 8 8 n3+8n2+24n+48
T3(aB;70) (b) 3n+10 n+6 n+6 5n+22
74(aB; 6) (e2) n?+10n+24 n?+6n+16 n2+6n+16 3n24-22n+56
pa(a, B;7,9) (e1) 8n+24 n2+8n420 An+16 n2+20n+60
wa(af;vo) (9), (3) 3n2+18n+32 2n+12 2n+12 3n2+22n+56
x4 (B;v8) (f) n?+12n428 4n+16 4n+16 n2420n460

In order to obtain the total coefficient of all three channels one carries out
symmetrization and produces the corresponding P(n). For a kth-order diagram
P(1) = 3%, because each bare vertex at n > 1 has three ways of spin propagation,
corresponding to the three channels in Eq. (12). Every kth order diagram becomes
3% diagrams and each spin loop brings about d,, = n. Therefore, the coefficient of
an n > 1 diagram is

C(n) = C(1)P(n)/3%. (46)

Examples: Cy(n) = 4(n + 8); Cy(n) = 64(5n + 22). The coefficient of nonparquet
diagram Fig. 3(h) must be calculated directly and it is

Aapvp)A(Bpwo) A(ypurw)A(dtve) = 3(5n + 22)A(afvd) .
Therefore, Cy,(n) = 1536(5n + 22).

6.3. Parquetry rules

We first consider the case n = 1. Suppose that a complex diagram decomposes into
two subdiagrams (x) and (y) according to the reducible channels, as given in Fig. 6
with symmetry property of the diagram shown symbolically. If the coefficients of
the subdiagrams are known to be C;(1) and Cy(1), then

Coy = [DzCy(1)] % [DyCy(1)] * (Cg)QT- (47)

Here, the coefficient D reflects the weight of the subgraph channel. Figure 6(x) has
a weight D = 1/3 in the horizontal channel, and D = 2/3 in the vertical channel.
Figure 6(y) has weight D = 2/3 in the vertical channel, but in the horizontal
channel due to left-right asymmetry each parquet has weight 1/6. A fully symmetric
diagram has weight D = 1. If the original diagram has left-right symmetry then
T = 1, otherwise T = 2. The factor C4 = 6 is the number of combinations when
picking up two external lines in a four-point subgraph. Take, for example, Fig. 3(7),
it is the result of combining two Fig. 3(a), therefore

Ci(1) = F

30(1(1)} i [%ca(m] X 72 = 20736
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When n > 1, we first consider a case with fixed spin indices. The coefficient of
the original graph is still given by Eq. (47), but when changing C(1) to C'(n) in
Eq. (46), P(n) must be taken as that before the symmetrization. Only the final
result is subject to symmetrization. When the weight in the vertical channel is
D = 2/3, one may write down explicitly the two combinations of the spin indices
to be summed over and use D = 1/3 instead. Take again Fig. 3(i) as example,

%%(1)%} E@(UAQ(W”‘;);%(W; vy)

X 72 = 256wy (aB;v0) ,

yielding C;(n) = 256(3n% + 22n + 56) after symmetrization. Since the definition
of vertex part includes the symmetric tensor and the factor 1/3, calculation of the
coeflicients of skeleton graphs reduces to that of the perturbation diagram coefficient
C(1). For example, the coefficients in Eq. (24) are C,(1) = 36 and C.(1) = 432.

7. Some Integrals

We list the integrals used in this work. These integrals are calculated in a
d-dimensional spherical coordinate system, expanded to the required power of e.
In diverging integrals we introduce a momentum cut-off A and retain the nonvan-
ishing terms at A — 0. The subscripts of the following integrals are the same as
the labels in the corresponding diagrams. Usually the derivatives of some integrals
are easier to calculate than the integrals themselves. In the following formulas,
we have L = A/\/r, the Euler constant C' = 0.577216, the Riemann ¢ function
¢(3) = 1.202057, and an integral

o Inx dx
= — —— = 1.171954.
= /1 22 —zc+1lz+1 7195

I(p,7) = La(p,7)

\/p2+4rln\/p2+4r—p

p VPP +4r+p

= [ @6 +a) - 1+2mmL+

1
(4m)?
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I=1,00,7)
- (4i)2 {21nL —1+5 [(an (- C+ln477r) + %2 - 2(1nL)2} } :
(48)
I(p) = L(p,0) = (471r)2 {(21n% S+ %(111477 o)
+ € B —2Inp+InA+ (Inp)* — (1nA)2]} :

o= [6(o-5)6 (04 5) 1w,

Iy = I,(0,r) = — (4717)4 [1+Cy —2(InL)?], (49)
I, = S 1,0,r)
= (4771)47« {—2lnL+ € [Cl - 7{—; +2 (c - 1n47” - %) InL + (1nL)2]} ,
I = @y [1+2C; —4(In L)%, (50)
I, = (473)%[01 2L —2(InL)?, (51)
I, = ( 73)67,[2 —4(In L)%, (52)
I = - ( 475)67«4(3)’ (53)
1= [ GG + ) - G,

(54)

8. Generalized Homogeneous Functions and the Callan—Symanzik

Equation

Consider a general function of, say, three variable f(z1,x2,z3). If under a scale

change in all dimensions xr; — Ax;, the function remains the same except for

multiplying by a numerical factor A\™:

f()\$1,)\$2,)\$3) = )\nf($1,$2,$3) s (55)
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then f is a homogeneous function of order n. Differentiating both sides of Eq. (55)
with respect to A and letting A = 1, we get a partial differential equation, namely,
the Euler equation for homogeneous functions:

0
+r35—

073 (w1, 22, 23) = nf(x1, 2, 23) . (56)

0 n 0
T1=— + To—
! 8x1 2 8x2
. 0 . A
The expression in square brackets ), %8_ is called a dilation operator.
-

3
If the scale change is performed differently in different dimensions x1 — A%z,
To — A%z, 3 — A*1x3 and the function remains the same up to a common
factor \™:

f'(}\a1x17)\a2x27>\(13x3) = Anf(x17x27x3)v (57)

then f is a generalized homogeneous function. It satisfies a generalized Euler
equation

Q1T — + QeTa7— f(x1,20,w3) = \" f(21, 02, 73) - (58)

0
81‘ 82

The dilation operator becomes

+ asxs

O3

0 0
Q1T —— + QaTo— + Q3X3 77—

a{E 3$ Ox 3

Many scaling relations may be derived if one assumes that thermodynamic functions
near critical points are generalized homogeneous functions.'?

If, in addition, the function contains a parameter R which depends on the factor
A during the scale change, i.e., R — R(\). Then there appears a term in the
generalized Euler equation as well as in the dilation operator:

0 0
[zi:aimia—xi+ﬁﬁ f(z1, 22, 23) = \" f(21, 22, 23) (59)
where a coefficient (3 is introduced:
dR
p= 5 (60)
dA A—0

This is an elementary derivation of the Callan—-Symanzik equation without making
use of any knowledge of field theory. At critical point, the correlation length diverges
and the scale change does not affect the generalized function at all. In other words,
at the critical point = 0. The critical exponents may be calculated from the zero
of the coefficient function  in the Callan—-Symansik equation. Had we been aware
of this elementary derivation of Callan—Symansik equation 40 years ago we could
have explained the relation of our skeleton graph expansion to other field theory
calculation of critical exponents then.

Note: In the Reference list, we included only those available when writing paper
of Ref. 9 except for Ref. 1.
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