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This paper presents yet another application, perhaps the simplest one, of the Closed Time Path 
Green's Function (hereafter abbreviated to CTPGF) technique to nonequilibrium problems. 
General expressions for nonlinear responses are derived using CTPGF. Various arguments 
leading to relations among high order response functions are outlined. 

1. Introduction 

Linear  response  theory,  centered on the reciprocal  relation for  kinetic 
coefficients and the fluctuation-dissipation theoreml-3), no doubt  belongs to 

one of the most  successful  chapters  in nonequilibrium statistical physics. 
Never theless ,  nonlinear response  has not yet become  an active field of  research,  
in spite of a few formal  developments4-a). Indeed there are some reasons  for  
this s low-footed advance  in nonlinear response  theory. 

First, usual criticism on linear response  theory,  cf., for exampleg), refers  to 
nonlinear response  to even larger extent.  In addition, nonlinear response  
theory has its own difficulty of  principle. Linear  response  reflects intrinsic 
propert ies  of  a physical  sys tem,  independent  upon boundary  conditions. On 
taking into account  nonlinear terms in external fields there appears  the heating 
effect. In order to keep the system in stat ionary state, one has to remove  the 
heat thus generated.  Therefore ,  generally speaking, nonlinear response  would 

depend not only on the physical  sys tem itself, but also on boundary  con- 
ditions; still, one can manage to avoid the heating problem in practice. For  
instance, two-dimensional  sys tems immersed  in liquid helium, owing to high 
heat conduct ivi ty of helium, could provide good objects  for  measuring non- 
linear response.  

Second, except  for  nonlinear optics and a few other cases there has not 
been urgent necessi ty in nonlinear response  theory.  Moreover ,  nonlinear 
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response deals with functions of many time arguments which require more 
subtle data acquisition and processing techniques to be used in measurement. 
Four-point correlation functions have attracted more attention quite 
recentlyt°). Progress in picosecond technique and multichannel analysis of 
time signal sequences will certainly make the measurement of multi-point 
response functions practical thing. Provided the nonlinearity of a physical 
system being notable, the study of nonlinear response should yield more 
knowledge about the system. Therefore, it seems desirable to have a more 
detailed analysis of various relations among multi-point response functions. 

Third, the formulation of nonlinear response theory has become tedious 
due to the lack of systematic and concise notations. It was difficult to tell the 
general form of various relations. Nevertheless, the development of the 
closed time path Green's function technique has provided a suitable tool for 
analysing nonlinear response. Many relations obtainable otherwise by more or 
less complicated means look very simple in the language of CTPGF. 

In view of the success of linear response theory, one should not hesitate at 
the criticism mentioned before. At least, the problem of an overall analysis of 
the formal relations in nonlinear response theory is ripe for settlement. This is 
the motivation of our paper. 

2. Closed time path Green's functions 

First introduced by Schwinger") and further elaborated by Keldysh t2) and 
many others, the CTPGF technique has since furnished powerful means to 
treat equilibrium and nonequilibrium problems in a unique way, yet its 
potentiality has not been widely recognized (see 13) and references cited 
therein). In particular, the transformation relations among three sets of 
CTPGF's t4,~) lead naturally to a unique definition of multipoint retarded, ad- 
vanced and correlated functions and automatically fulfil the causality require- 
ment at every step of derivation. Incorporated with generating functional 
formalism, the perturbative expansion of averages of physical quantities and 
their fluctuations leads directly to general formulae for nonlinear response. 
We shall not repeat the detailed discussion of various properties of CTPGF, 
given in ~3-t5), but only list here the notations and definitions needed below. 

n-point Green's function Gp(1,2 . . . . .  n), defined on the closed time path, 
are nth variational derivatives of the generating functional Z[J] or W[J]. 
Various relations, written in terms of Gp, retain a maximum parallelism with 
quantum field theory. By fixing the time branch of each argument G o becomes 
2" functions Go~ ~(1,2 . . . . .  n), where the Greek indices take the value + or 
- .  They may be viewed as components of a matrix Green's function (~. They 
are needed for calculating the Feynman diagrams. Genuine physical relations 
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are expressed  through linear combinat ions of t he se  G~o...v. They are com- 

ponents  GiL..k(1,  2 . . . . .  n )  of another  matrix Green ' s  function G, the Latin 
indices being 1 or  2. 

External  sources J+ and J_ on the positive and negative time branches will 
be put equal to the physical  external  field J+ = J_ = J only at the last stage of 
calculation. The difference J+-.l_ plays the role of  the fictitious external 
source in Schwinger 's  formal ism of generating functionals. Equalities J+ = 
J = J and J = 0 may be taken at two distinct steps. This leads f rom the 
normalization condition of the generating functionals 

Z[J+, J ] [L=L=j = 1, (2.1) 

W[J+, J_] [I+=L=J = 0, (2.2) 

to the identity 

a/3. • • T G ~ . . . ,  = 0, (2.3) 
a ~ . . .  ? 

or, in terms of t~, 

Gll... 1 = 0. (2.4) 

Therefore ,  only 2" - 1 components  of t~ are different f rom zero. We shall 
see later that algebraic and physical  considerat ion will decrease  further  the 
number  of  independent  components .  

Excep t  for (2.4), all other components  of t~ are averages of  n -  1 nested 
commuta tors  and ant icommutators .  In particular,  G2, ..... j, being combinat ion 
of averages of  n - 1  nested commuta tors ,  is the fully retarded n-point  
function, i.e., the r-functions in the LSZ field theory16), and G222...2, being 
combinat ion of averaged n -  1 nested ant icommutators ,  is the n-point  cor- 
relation function without any retarded or advanced relation among its time 
arguments.  

Take  for  example ,  the case n = 3. Formulae  (2.3) and (2.4) concret ize to 

G+++ + G+-- + G-+- + G-_+ = G - - -  + G++_ + G+-+ + G ++ 

and 

Gll, = 0, (2.5) 

where 

G+++(123) = (-i)2(T(123)), 

G+÷_(123) = (-i)2(3T(12)), 

G+__(123) = (-i)2(~'(23)1), 

G___(123) = (-i)2(7"(123)), 
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etc., T and T being the chronological and antichronological operators.  The 
absence of averages of (T(12)3) or (1 T(23)) types, as will be shown later, does 
not lead to any difficulty on taking into account  time reversal symmetry.  

3. General expressions for nonlinear response 

In fact, the derivation of general expressions for nonlinear response is the 
simplest application of the transformation relations among three sets of 
CTPGF'st4). 

Assume the system was in equilibrium state described by Hamiltonian ~0 
and density matrix 

O0 = 1 e ~0, z = Tr e --ou° (3.1) 
z 

in the remote past to = - ~ and then a t ime-dependent external field J(t)  has 
been included adiabatically which drives the system out of equilibrium. The 
external field J is coupled to dynamic variable Q of the system and the total 
Hamiltonian becomes 

~ ( t ) =  ~ 0 - J ( t ) Q .  (3.2) 

Hereinafter  we adopt the simplified notation of ~5) andl7), i.e., we omit the 
summation or integration sign and even ignore the arguments and subscripts. 
For instance, we use 

JQ=- ~ f dxJ,(x,t)Q,(x). (3.3) 

In order to indicate the time dependence sometimes we retain the time 
argument t alone. 

We restrict ourselves to the case (3.2) of linear coupling of the system with 
external field. We do not consider nonlinear couplings, such as (hE) 2 or (nI-I) 2 
couplings in liquid crystals or EiEjP o (Pii being the polarization tensor) 
coupling in second order light scattering. We mention in addition that all these 
cases may be treated as linear ones by using composite operators in the 
C T P G F  formalism. The problem of thermal disturbance will not be touched in 
this paper either. 

Q in (3.2), being operator  in the Schr6dinger picture, does not depend 
explicitly on t. Operators in the Heisenberg and interaction pictures will be 
denoted by UH(t) and Q~(t), respectively. The average of a dynamic variable 
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may be calculated in any picture, e.g., 

(Q(t))  = Tr(Qp(t))  = Tr(QH(t)po). (3.4) 

The merit of Heisenberg picture consists in putting all the time dependence 
on the operator  QH(t) and one can use the equilibrium density matrix p0 of the 
initial state to compute  the average. We denote hereaf ter  

Tr(.-. po) -= ('")0. (3.5) 

In accordance with the very spirit of classical statistical physics the 
statistical average is carried out for  the initial distribution only and the 
evolution of the system obeys dynamical equation, independent on statistical 
properties. If for a set of dynamical variables of the system {Qi, i =  
1,2 . . . . .  n}, we know the various average values 

(Qi(t)), 

( Qi( t OQi( t2)), (3.6) 

( Qi( t OQ~( t2)Qk( t3) ), 

we would have a more and more detailed statistical description of the 
nonequilibrium properties of the physical system. 

In the quantum case not every  product  of operators corresponds to the 
physical observable. Here appears the problem of operator  ordering. Accord- 
ing to Dirac ~8) it requires that (1) the product  has real eigenvalues, i.e. it is a 
hermitian operator,  (2) it has a complete set of eigenstates, (3) it satisfies 
certain physical supplementary conditions. Without losing generality we can 
take all Q~'s to be hermitian, but it is hard to say anything about completeness 
in general. Nevertheless,  the hermiticity of operator  products can still serve 
as a guideline. For example, for  A and B both hermitian and complete A + B 
remains hermitian, but may not be complete,  and A B  may be neither her- 
mitian, nor complete.  Yet both combinations AB + BA and i ( A B -  BA)  will 
be hermitian, the former  being the correlation function Gc ~- 622 and the latter 
being G2~ - G~2 = G r -  Ga = G+ - G +; i.e. the spectral function for two-point 
function made of A and B. 

From products of three hermitian operators one can form even more 
hermitian combinations, e.g., A B C  + CBA, B CA  + ACB,  CAB + BAC, 
i ( A B C - C B A ) ,  i ( B C A - A C B ) ,  i ( C A B - B A C )  and various linear com- 
binations of them. In the classical limit averages of first three combinations 
will give the same result, but they differ from each other in high orders of 
quantum corrections.  To our understanding this concerns not yet completely 
solved problem of operator  ordering in quantum-classical correspondence.  
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One needs supplementary physical consideration to make choice. Since in the 

h = 0 limit all products  of the same set of operators ,  including partially or 
fully symmetr ized  products,  lead to the same average value, we make the 
following fundamental  assumption:  in the quantum case the quantity which 
corresponds to the average of the product  of dynamic variables in (3.6) is just 
that component  of (~ whose subscripts are all equal to 2. For the two-point  
function 622 it is the fully symmetr ized correlation function ,9), but G222, G2222, 
etc., are only partially symmetr ized averages.  

Thus we shall consider all G2 = (Q), G22, G222 . . . .  , as functions of the 
external field J, to be observable  physical quantities. To write down general 
expressions for nonlinear response we first extend the definition of external 

field J to positive and negative time branches,  putting J+ = J_ at the end. We 
expand C T P G F ' s  of all orders 

Gp(l) = (Qn(t))0 = (Tp(Q'(t)Sp)o, 

G,(12) = -i( Tp( Qn( l )Qn(2) ))o = -i( Tp( Q'(1)Q'(1)Sp)o, (3.7) 

Gp(123) = (-i)2( Tp( QH(1)QH(2)Qn(3)))o = (-i)Z( Tp( Ql( l )Q~(2)Ql(3)Sp)o, 

in powers  of J. All times in (3.7) are taken on the closed time path p. 
Chronological operator  Tp and S-matr ix Sp on p has been defined in'~ts). 

Here  we have 

S~ = Tp exp(-i  f JO' dx) • 
P 

Therefore ,  in order to expand (3.7) in terms of J one can proceed f rom the 
generating functional for a " f ree  field" 

Z[J] = (So)0 

and the definition of the generating functional 

W[J] = i ln Z[J] (3.8) 

as an analytic functional 

2' W[JI  = ~.v Ap(I . . . . .  n ) J ( l ) . . .  J (n) ,  (3.9) 

where the connected Green ' s  functions of the "free  field" have been denoted 

by 

~"W[J]  1~0" ap(I ,  2 . . . . .  n) = M ( 1 ) 6 J - ~ _ ~ -  ~J(n) (3.10) 

"Free  field" operator  Q~(t) in the interaction picture is merely free f rom the 
external field J. It contains all inherent interactions of the system. 
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From (3.10) we see immediately that 

G0(1) = Ap(1)+ Ap(12)J(E)+lAp(123)J(2)J(3)+ . . . .  

Gp(12) = fiGp(1)M(2) = Ap(12)+Ap(123)J(3)+lAp(1234)J(3)J(4)+.  "'" ' 

8Ge(12) Ap(123) + ~p(1234)J(4) + .  Go(123)= fiJ(3) = " "  

(3.11) 

Usually Ap(1) is taken to be zero. 
To transform into the third set of CTPGF it is sufficient to insert Pauli 

matrix o-114): 

l 
G(1) =/((12)(o.~J)(2) + ~./~ (123)(o.~J)(2)(o.~J)(3) + . . . .  

6(12) =/((12) +/~(123)(o.,J)(3) + 1/~(1234)(o.lJ)(3)(o.,J)(4) + . . . ,  

G(123) =/((123) +/((1234)(o-lJ)(4) + . . . .  

According to the discussion at the beginning of this section we have to 
retain only the last component in these CTPGF's ,  i.e. the component with 
subscripts all equal to 2, and put J+ = J_ = J. In this way we get the general 
expressions for nonlinear response: 

(3.12) 

1 
G2(I) = (QH(t)) = A21(12)J(2) + ~. A2,(123)J(2)J(3) + . . . .  

1 
G22(12) = A22(12) + AE21(123)J(3) + 2.1 A2211(1234)J(3)J(4) + . . . .  

G222(123) = A222(123) + A2221(1234)J(4 ) + . . . .  

(3.13) 

In these formulae J(t)  is taken on the ordinary time axis. The first two lines of 
(3.13) contain results obtained previously in 4) by explicit manipulation of 
integrals. In the language of CTPGF the structure of high order terms is 
evident. 

In accordance with the convention in literature**) A21 , z~211, A2111 . . . .  should 
be called response functions of the averaged physical variable to external 
field, their Fourier t ransforms-the admittance function of various order. G22, 

G222 . . . .  and /$22, A222 . . . .  are called nonequilibrium and equilibrium fluctua- 
tions of different order, and A221, A2211 , A2221 . . . .  are response functions of 
these fluctuations to external field. 
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Other components  of (3.12), e.g., nonequilibrium retarded function 

A21ff123)J(3) + ~ A2~I(1234)J(3)J (4) + . . . .  (3.14) G21(12) A21(12) + 

being straightforward extension of the usual definition of linear response 

~(QH(1)) (3.15) A2ff12)- 6J(2) s=o 

to 

G2,(12)-  a(Q"(1)) 6j (3.16) 

by dropping the requirement  J = 0, may just be named nonlinear response 
function. The variational derivative in (3.16) means 

~ ( Q H ( t ) )  = f G2,(12)fJ(2) d2. (3.17) 

In fact, by integrating (3.14) with respect  to J one gets the first formula  in 
(3.13). Consequently,  there is no additional information contained in G2j as 
well as in those terms, which have disappeared in going f rom (3.12) to (3.13) 
due to putting J+ = J . 

Independent  functions which may be measured in principle are those listed 
in the following table and their high order extensions. 

Average 2-point 3-point 4-point 
correlation correlation correlation 

Without external (A~ O) A22 /~222 A2222 
field 
Linear response A2L A221 A2221 A2222 I 
to external field 
2nd order response A2~ A22u A22211 A222211 
3rd order response g2un A22ul A22211[ A2222111 

In this table on each oblique line, f rom lower left to upper  right, there are 
components  of one and the same (~ function, so the relations indicated in 4'6'7) 
look very natural. 

To sum up, observables  in nonlinear response theory are partially sym- 
metrized nonequilibrium correlation (fluctuation) functions G2, G22, G222 . . . . .  

etc., as functions of the external field J, in particular, their initial derivatives 

A2 ~ I I = ~ T G ,  ~ (3.18) 
. . . . . . . .  zLL- s=o 
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The possibility to measure them in practice depends on the nonlinearity of the 
system itself, i.e., the notability of functions (3.18), and the strength of the 
external field J. 

4. General considerations on the relations among multi-point response functions 

The n-point function (~ has 2 " - 1  nonzero components.  By imposing 
different physical requirements,  such as the initial state being in thermal 
equilibrium, the time reversal symmetry  and so on, one can derive many 
relations among these components ,  including the various extensions of 
fluctuation-dissipation theorems to nonlinear case. Generally speaking, there 
are four groups of relations to be used. We list them below. 

4.1 Exact algebraic relations 

The explicit definition of Gij...k(1,2 . . . . .  n) contains 0-functions, nested 
commutators  and anticommutators,  which satisfy a few exact algebraic rela- 
tions. For example,  for 0-functions, there are normalization and summation 
formulae~4), and commutators  satisfy Jacobi identity and its generalization. 
Moreover ,  the fundamental  property (2.4) of CTPGF ' s  has many equivalent 
forms. For  instance, it is very easy to rewrite it for  the three-point function 
either in " re ta rded"  combination 

l(G211 + G121 + G221) = G+++ - G++_, 

or in "cor re la ted"  combination 

1(GII2 + G122 + G212 + G222) = G+++ + G++_. 

Similarly for the 4-point functions we have 

and 

(4.1) 

(4.2) 

l (Gzll l  + GI211 + 62211) = G++++ + G++__ - G+++_ - G++_+, (4.3) 

I(G2111 Jr- G1211 -~- GII21 + G2211 -F G2121 + GI221 q- G2221) = G++++ - G+++_, (4.4) 

½(Gz222 + Gin2 + G2J22 + G1122) = G++++ + G+++_ + G++_+ + G+++_, (4.5) 

/(G2222 + Gill2 + G2112 + G1212 + Gll22 + G2212 + G2122 + G1222) = G++++ + G+++_. 
(4.6) 

By inspection one easily discovers the rule to write analogous formulae for 
multi-point functions. We emphasize that all of  them are equivalent to (2.4) 
and do not contain new information. Nevertheless,  (4.1) and (4.3) were 
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derived in6) *, using very inconvenient notation and not recognizing them as 
identities. They were used by the same author 2°) to draw further conclusions 
on the relation among multi-point functions. 

4.2. K M S  condi t ion  3"2~) 

A basic assumption in response theory consists in the system being in 
equilibrium described by density matrix (3.1) for to = -oo. Introducing time- 
dependent external field, the average of operators Q~(t) in the interaction 
picture satisfies the following relation (h = 1,/3 = (kT) -1) 

(Ql(t)Q~(tO)o = (Ql(tOQ~(t  + i/3))0 = eiO~lOt(Q~(tl)Ql(t))o. (4.8) 

Owing to time-translational invariance of the equilibrium state, (4.8) can be 
written as 

( Q~( t )Q~(O))o = e i~m ( Q~(O)Ql( t ))o. (4.9) 

Fourier transform 

Q}(t) = ~ e-i~tQ}(w) 

corresponds to replacement 3 / O t ~ - k o  in (4.9) 

(Ol(~o)Q~(0))0 = e~(Q~(0)Ql(co))0. (4.10) 

This is the so-called KMS 3':~) condition. For systems with infinite number of 
degrees of f reedom the range of validity for the KMS condition is wider than 
that for the density matrix. From (4.10) follows a relation between com- 
mutator and anticommutator:  

({Ql(~o), Q~})0 = coth(~)( [Q~(~o) ,  O~])0. (4.11) 

This is the fluctuation-dissipation theorem for a 2-point function. 
We are concerned with the KMS condition and fluctuation-dissipation 

theorems, satisfied by multi-point functions. First of all, for any function, 
invariant under time translation 

F(t~, t2 . . . . .  t.) = F(t~ - t., t 2 -  t . . . . . .  0), (4.12) 

we have 

3 
i~ ~-~ F = 0 ,  

* Labelled as (2.23) and (2.24) in6). 
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or ,  s y m b o l i c a l l y  a f t e r  F o u r i e r  t r a n s f o r m ,  

~'~ toi (4.13) 0. 
i = l  

N e x t ,  le t  u s  c o n s i d e r  the  a v e r a g e d  p r o d u c t  of  n o p e r a t o r s .  T r a n s p o s i n g  the  

l e f t m o s t  o p e r a t o r  to t h e  r i g h t m o s t ,  o n e  at  e a c h  t ime ,  as we  d id  in  d e r i v i n g  

(4.8), we  ge t  

( Q l ( t O Q 2 ( t 2 )  . . . Q , ( t , ) ) o  = e i ~ / a ' l ( Q 2 ( t 2 ) Q 3 ( t 3 )  . . . Q n ( t n ) Q l ( t O ) o  

= e i ~ / o t l + ° / ° t g ( Q s ( t s ) Q 4 ( t 4 ) . . .  Q l ( t O Q 2 ( t 2 ) ) o  

= e - i ~ a / a t , ( Q , ( t , ) Q l ( t O  . . .  Q , - 2 ( t ~ - 2 ) Q , - J ( t , - O ) o .  

W e  c a n  s top  at  a n y  s tep ,  i n t r o d u c e  t w o  f u n c t i o n s  

F ~ - ~ ( t l  . . . . .  t i ;  ti+l . . . . .  t , )  = ( Q l ( t O  . . . Q i ( t i ) Q i ÷ l ( t i ÷ O  . . . Q , ( t ~ ) ) o ,  
(4.14) 

F~÷~( t l  . . . . .  ti ; ti+l . . . . .  t , )  = ( Q i + l (  t i+O . . . Q , (  t n ) Q l (  t O . . . Qi(ti))0, 

a n d  wr i t e  

F ~ - ~ ( t l  . . . . .  t . )  = e i ~ a l a t l + + a l a t ~ F ( + ) ( t l  . . . . .  t n ) .  (4.15) 

A f t e r  F o u r i e r  t r a n s f o r m  o n e  h a s  t h e  g e n e r a l i z e d  K M S  c o n d i t i o n  

F~-~(tol . . . . .  co,) = e ~ ' +  +°"~F~+~(tol . . . . .  to~). (4.16) 

D e f i n i n g  t w o  m o r e  f u n c t i o n s  

F (c~ = F ~-) + F <+~ = ({Ql ( t0  • • • Q i ( t i ) ,  Q i + l ( t i + O . . .  Q,(t ,)})0,  

F (a) = F (-) - F (+) = ( [ Q l ( t 0 .  • • Qi(ti) ,  Qi÷l(ti+0 • • • Q,( t , ) ] )0 ,  

t h e n  we  h a v e  

F(C)(tol . . . . .  tol; toi+J . . . .  , to,) 

= co th /3( to l  + " " " + toi) F(a)(tob • • tol; toi÷l . . . .  to,). (4.17) . ~ , 

In  fac t ,  r e l a t i o n s  s imi la r  to (4.16) a n d  (4.17) c a n  b e  w r i t t e n  for  f u n c t i o n s  of  

m o r e  g e n e r a l  t ype ,  i.e. 

F ~-~ = ( P ( Q l ( t O . . .  Q i ( t i ) ) P ' ( Q i ÷ l ( t i ÷ l ) . . .  Q , ( t , ) ) ) o ,  (4.18) 

w h e r e  P or  P '  m a y  d e n o t e  c h r o n o l o g i c a l  p r o d u c t  T, a n t i c h r o n o l o g i c a l  p r o d u c t  

T, s y m m e t r i z e d  p r o d u c t  S y m ,  n o r m a l  p r o d u c t  N or  o r d i n a r y  p r o d u c t  ( P  = 1). 

I t  is c l e a r  f r o m  the  d e r i v a t i o n  t ha t  it  is e v e n  n o t  n e c e s s a r y  to f a c t o r i z e  

P ' ( . . .  ) in  (4.18) i n to  n - i f a c to r s .  
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For 2-point functions the KMS condition relates different components  of 
the CTPGF,  leading to the usual fluctuation-dissipation theorem. In the case 
of multi-point functions it can only relate the symmetric and antisymmetric 
parts of one and the same component.  For example, writing the 4-point 
function G++__ in the form 

G÷+ (1234) = ( - ~  ((T(34)T(12))0 + (W(12)T(34))0) 

+ ~ ((7"(34)T(12))0 - (T(12)2r (34))0), (4.19) 

and considering the two parenthesized terms as F (c~ and F (a~, respectively, we 
would have a relation similar to (4.17). Therefore,  KMS condition alone can 
not give the fluctuation-dissipation theorem, relating different components  of 
a multi-point GTPGF.  One should impose supplementary constraints on the 
system, e.g. require it to be invariant under time reversal. 

4.3 T i m e  reversal  s y m m e t r y  

For macroscopic systems time reversal invariance is a very strong con- 
straint. It leads to the detailed balance and the existence of "potential 
funct ions" (see, e.g., 22) and references cited therein). 

Initial state of macrosystem may depend on some external parameters ,~i 
and its dynamics, i.e., the Hamiltonian of the system, may depend on external 
fields Jj. Under time reversal classical quantities hi and Jj transform to 

hi ~ eihi, Jj -~ ejJj, (4.20) 

with the signature el or ej being-+ 1. 
In quantum mechanics time reversal is described by antiunitary operator R. 

In the Schr6dinger picture operators do not depend on time explicitly, so 
there appears only a signature under time reversal: 

Q i ~  R Q i R  ÷ = e i Q i ,  ei = --+ 1. (4.21) 

We shall not describe the details of time reversal. In agreement with 22) we 
consider a system to be time reversal invariant if its dynamics satisfies 

~ [ J ]  ~ R ~ ( [ J ] R  ÷ = g([eJ] (4.22) 

and its initial state wave function transforms as 

g'to(h) ~ R~t,,(h) = qzL0(eh). (4.23) 
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The last requirement may be imposed on the initial density matrix 

po(A ) -~ Rpo(A ) R  + = p0(eA). (4.24) 

Merely a special class of macrosystems satisfy conditions (4.22-4.24), but 
for the time being knowledge about systems beyond this class is very poor. 

We confine ourselves to this class only. 
Denote the averaged product  of Heisenberg operators by 

Fi,...,.(tl . . . .  t. ;J, A) = (Q.n , , ( t i . ) . . .  Q~( t , ) )o ,  (4.25) 

where the J -dependence  comes from ~ [ J ]  and the A-dependence from p0(A). 

Using (4.22)-(4.24) it is easy to prove 

F i l . i . ( t l  . . . .  t ,  ;J, A) = eq . . . E i F i , . . . q ( - t  . . . . .  - t l  ;eJ, cA) 

= ei~ • • • e i y ~ , . ,  i . ( - t z  . . . .  - t ,  ; E J, cA). (4.26) 

The second line in (4.26) is based on an equality 

T r ( A B . . .  D) = T r ( D . . .  B A ) * ,  

satisfied by hermitian operators.  Since p0 and Q~ are all hermitian, we have 

Fq.. .~.(t~ . . . .  t , ;  J, A) = F~,, . . .~,(t  . . . . . .  tl; J, A). (4.27) 

Components  of C T P G F  are linear combinations of averaged operator  
products,  so for systems with time reversal symmetry  one can write down the 

time reversal properties,  using (4.26). For  example,  owing to 

(3T(12)) J = e l e 2 e 3 ( T ( - I  - 2 ) - 3 )  "J, 

(T(12)3) j = e l e E e 3 ( - 3  T ( -  1 -2) )  °, (4.28) 

where only one superscript J has been used to represent  both J and A, we can 

split 3-point function G++ into two parts 

G++_(123; J)  = GS+_(123; J ) +  GA++-(123; J),  (4.29) 

where 

GS+_(123; J)  = GS+_( - I - 2  - 3 ;  d )  = ((3T(12)) j + ~a~2~3(T(12)3)J), 

G+A+_(123; J)  = --GA+_(--1 --2 --3; ~J) = ((3T(12)) j - E1E2~3(T(12)3)J)- 

(4.30) 

This is another  way, different from (4.19), to divide a multi-point function 
into symmetric and anti-symmetric parts. Further  use of the KMS con- 
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dition leads to, e.g. 

GS+-(tOltO2023; J )  = 
1 - E I E 2 1 E 3  e/3~3 
1 -T EIE2~'3 e/3~3 G+A+-(021022023; J)" (4.31) 

4.4. Fourier transform and spectral representation 

Four ier  t rans form alone does  not  bring about  new informat ion ,  but  it is 
more  conven ien t  to incorpora te  K M S  condi t ion  and time reversal  invar iance  

after  pe r fo rming  the Four ier  t ransform.  There fore ,  we discuss  in general  the 

Four ier  t r ans fo rm of  n-point  funct ions .  
The Four ier  t r ans fo rm of  a funct ion,  invariant  under  time t ranslat ion (4.12) 

may  be writ ten 

F(021 . . . . .  02,) = 27r~(tOl + . . .  + 02 , )Fj (02 , . . .  , tk ---- 0 . . . . .  02,), (4.32) 

where  in F I  the Four ier  t r ans fo rm has been  carr ied out  only for  n -  1 
arguments  and the un t r ans fo rmed  a rgument  is wri t ten explicit ly as tk = 0 with 

k taking any  value f rom l to n. In o ther  words ,  the Four ier  integral o f  a 

n-point  funct ion  looks like 

do21 • • • d t O k .  • • d02, , t . )  = J (~-~=f e i[t°l(t'-t~)+'+d~k+ . . . .  n(tn-tk)] F(tl  

× Fl(021 . . . . .  tk = 0 . . . . .  02,), (4.33) 

where  a caret  deno tes  the absent  factor .  
C T P G F  usually conta ins  p roduc t s  of  the n-poin t  funct ion  and the 0- 

funct ion,  e.g., 

FR(tb t2, t3, t4) = (-i)30(4132)F(h, h, h, t4). 

Fac tor iz ing  the 0- funct ion  

0(4132) = O(t4- tOO(h - t3)O(t3- t2), (4.34) 

using the representa t ion  
+ ~  

i ~ dl'~ e_ia, 
O ( t ) - -  ~ - ~  J 

and noticing the last t ime in (4.34) being t2, we use the Four ier  t r ans fo rm with 

t2 = 0 and get  

1 ~ d ~ j  d~2 d~3 
FIR(021, t2 = 0, 023, O94) = ~ j (Oj + ie ) ( fh  + ie ) ( fh  + iE) 

X F1(021 + f]l - ~(~2, t2 = 0, 023 + ~Q2 - 1"~3, 024 - ~1). 
(4.35) 



GREEN'S FUNCTIONS AND NONLINEAR RESPONSE 235 

Subsequent change of variables passes all the ~o~-dependence onto the 

denominators 

FIR(CO1, t2 = 0, 603,034) 

1 f d ~  i d~'~2 d~Q3 FI(~Q2 - ~(~ 1, t2 = 0, ~ 3 -  ~2, ~f~l) 
- (2w) 3 J (to4-- ~ ~ ~ ~22 +-]e)-~4T ~ T ~3---~3+ i , ) '  

(4.36) 

the relation between F~R and FR being given by (4.32). This is the spectral 
representat ion for one of the terms in a component  of CTPGF.  It is not 
difficult to read out the rule how to write the spectral representat ion in a 
general case*), using the arguments of 0-function to indicate the order. 
Integration comes from 0-function. KMS condition and time reversal usually 
decrease the number of independent  spectral functions. 

It is clear at this point that combined use of the above-mentioned con- 
sideration may lead to many relations among high order response functions. 
This will be done elsewhere in a separate publication V/,ith colleagues. 

5. Conclusions 

We would like to make two remarks in conclusion. Firstly, this paper deals 
only with the formal aspects of nonlinear response theory. It bypasses such 
fundamental  problems as the origin of irreversibility or the condition for a 
response function to be different from zero which have been deeply analyzed 
by the Brussels school. Actually it is limited to situations, not very far from 
equilibrium and does not touch either the question of practical calculation of 
response functions for a concrete model. Still it seems useful to have such 
formal relations in view of possible future experiments,  with which our 
second remark is concerned.  In a sense most physical experiments measure 
responses to one or another disturbance. Development  of subtle data acquisi- 
tion and processing techniques will bring new impact to the measurement  of 
nonlinear responses as well as to a deeper  understanding of theoretical 
relations. 
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