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This paper presents yet another application, perhaps the simplest one, of the Closed Time Path
Green’s Function (hereafter abbreviated to CTPGF) technique to nonequilibrium problems.
General expressions for nonlinear responses are derived using CTPGF. Various arguments
leading to relations among high order response functions are outlined.

1. Introduction

Linear response theory, centered on the reciprocal relation for kinetic
coefficients and the fluctuation-dissipation theorem'?), no doubt belongs to
one of the most successful chapters in nonequilibrium statistical physics.
Nevertheless, nonlinear response has not yet become an active field of research,
in spite of a few formal developments*®). Indeed there are some reasons for
this slow-footed advance in nonlinear response theory.

First, usual criticism on linear response theory, cf., for example®), refers to
nonlinear response to even larger extent. In addition, nonlinear response
theory has its own difficulty of principle. Linear response reflects intrinsic
properties of a physical system, independent upon boundary conditions. On
taking into account nonlinear terms in external fields there appears the heating
effect. In order to keep the system in stationary state, one has to remove the
heat thus generated. Therefore, generally speaking, nonlinear response would
depend not only on the physical system itself, but also on boundary con-
ditions; still, one can manage to avoid the heating problem in practice. For
instance, two-dimensional systems immersed in liquid helium, owing to high
heat conductivity of helium, could provide good objects for measuring non-
linear response.

Second, except for nonlinear optics and a few other cases there has not
been urgent necessity in nonlinear response theory. Moreover, nonlinear
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response deals with functions of many time arguments which require more
subtle data acquisition and processing techniques to be used in measurement.
Four-point correlation functions have attracted more attention quite
recently'®). Progress in picosecond technique and multichannel analysis of
time signal sequences will certainly make the measurement of multi-point
response functions practical thing. Provided the nonlinearity of a physical
system being notable, the study of nonlinear response should yield more
knowledge about the system. Therefore, it seems desirable to have a more
detailed analysis of various relations among multi-point response functions.

Third, the formulation of nonlinear response theory has become tedious
due to the lack of systematic and concise notations. It was difficult to tell the
general form of various relations. Nevertheless, the development of the
closed time path Green’s function technique has provided a suitable tool for
analysing nonlinear response. Many relations obtainable otherwise by more or
less complicated means look very simple in the language of CTPGF.

In view of the success of linear response theory, one should not hesitate at
the criticism mentioned before. At least, the problem of an overall analysis of
the formal relations in nonlinear response theory is ripe for settlement. This is
the motivation of our paper.

2. Closed time path Green’s functions

First introduced by Schwinger"') and further elaborated by Keldysh') and
many others, the CTPGF technique has since furnished powerful means to
treat equilibrium and nonequilibrium problems in a unique way, yet its
potentiality has not been widely recognized (see') and references cited
therein). In particular, the transformation relations among three sets of
CTPGF’s"") lead naturally to a unique definition of multipoint retarded, ad-
vanced and correlated functions and automatically fulfil the causality require-
ment at every step of derivation. Incorporated with generating functional
formalism, the perturbative expansion of averages of physical quantities and
their fluctuations leads directly to general formulae for nonlinear response.
We shall not repeat the detailed discussion of various properties of CTPGF,
given in %), but only list here the notations and definitions needed below.

n-point Green’s function G,(1,2,...,n), defined on the closed time path,
are nth variational derivatives of the generating functional Z[J] or W[J].
Various relations, written in terms of G,, retain a maximum parallelism with
quantum field theory. By fixing the time branch of each argument G, becomes
2" functions G.s. ,(1,2,...,n), where the Greek indices take the value + or
—. They may be viewed as components of a matrix Green’s function G. They
are needed for calculating the Feynman diagrams. Genuine physical relations
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are expressed through linear combinations of these. G,s...- They are com-
ponents Gj. . .i(1,2,...,n) of another matrix Green’s function G, the Latin
indices being 1 or 2.

External sources J. and J_ on the positive and negative time branches will
be put equal to the physical external field J. = J_=J only at the last stage of
calculation. The difference J, —J_ plays the role of the fictitious external
source in Schwinger’s formalism of generating functionals. Equalities J, =
J-=J and J =0 may be taken at two distinct steps. This leads from the
normalization condition of the generating functionals

Z[J+’ J*] ’]*=I_=] = 1’ (2.1)

Wi, J|s,-5.-5 =0, (2.2)
to the identity

BZ aB...¥Gup.. ., =0, (2.3)

aff...y

or, in terms of G,
Gn_,,1=0. (24)

Therefore, only 2" — 1 components of G are different from zero. We shall
see later that algebraic and physical consideration will decrease further the
number of independent components.

Except for (2.4), all other components of G are averages of n — 1 nested
commutators and anticommutators. In particular, G,y ..., being combination
of averages of n—1 nested commutators, is the fully retarded n-point
function, i.e., the r-functions in the LSZ field theory'), and Gy,. ,, being
combination of averaged n — 1 nested anticommutators, is the n-point cor-
relation function without any retarded or advanced relation among its time
arguments.

Take for example, the case n = 3. Formulae (2.3) and (2.4) concretize to

Gy +G6+G, +G.,=G___+G,_+G,_,+G_,,
and

G, =0, (2-5)
where

G...(123) = (-)XT(123)),

G.+.+-(123) = (-i)*3T(12)),

G.--(123) = ()X T(23)1),

G-(123) = ()T (123)),
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etc., T and T being the chronological and antichronological operators. The
absence of averages of (T (12)3) or (1T(23)) types, as will be shown later, does
not lead to any difficulty on taking into account time reversal symmetry.

3. General expressions for nonlinear response

In fact, the derivation of general expressions for nonlinear response is the
simplest application of the transformation relations among three sets of
CTPGF’s").

Assume the system was in equilibrium state described by Hamiltonian 9,
and density matrix

po= % e %, — Tpe B 3.1)

in the remote past t, = — % and then a time-dependent external field J(t) has
been included adiabatically which drives the system out of equilibrium. The
external field J is coupled to dynamic variable Q of the system and the total
Hamiltonian becomes

#(t) = #o~ J(1)Q. (3.2)

Hereinafter we adopt the simplified notation of'’) and"), i.e., we omit the
summation or integration sign and even ignore the arguments and subscripts.
For instance, we use

Q=2 J’dx Ji(x, )Qi(x). (3.3)

In order to indicate the time dependence sometimes we retain the time
argument t alone.

We restrict ourselves to the case (3.2) of linear coupling of the system with
external field. We do not consider nonlinear couplings, such as (rE)? or (nH)?
couplings in liquid crystals or E,E;P; (P; being the polarization tensor)
coupling in second order light scattering. We mention in addition that all these
cases may be treated as linear ones by using composite operators in the
CTPGF formalism. The problem of thermal disturbance will not be touched in
this paper either.

Q in (3.2), being operator in the Schrodinger picture, does not depend
explicitly on t. Operators in the Heisenberg and interaction pictures will be
denoted by UY(t) and Q'(t), respectively. The average of a dynamic variable
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may be calculated in any picture, e.g.,

(Q(1)) = Tr(Qp(1)) = Tr(Q™(t)po)- (3.4

The merit of Heisenberg picture consists in putting all the time dependence
on the operator Q"(t) and one can use the equilibrium density matrix p, of the
initial state to compute the average. We denote hereafter

Tr(+ po) = (o (3.5

In accordance with the very spirit of classical statistical physics the
statistical average is carried out for the initial distribution only and the
evolution of the system obeys dynamical equation, independent on statistical
properties. If for a set of dynamical variables of the system {Q,i=
1,2,...,n}, we know the various average values

(Qi(1)),
(Q:i(t)Q;(12)), (3.6)
(Qi(t)Q;(t2) Qi (t3)),

we would have a more and more detailed statistical description of the
nonequilibrium properties of the physical system.

In the quantum case not every product of operators corresponds to the
physical observable. Here appears the problem of operator ordering. Accord-
ing to Dirac'®) it requires that (1) the product has real eigenvalues, i.e. it is a
hermitian operator, (2) it has a complete set of eigenstates, (3) it satisfies
certain physical supplementary conditions. Without losing generality we can
take all Q;’s to be hermitian, but it is hard to say anything about completeness
in general. Nevertheless, the hermiticity of operator products can still serve
as a guideline. For example, for A and B both hermitian and complete A + B
remains hermitian, but may not be complete, and AB may be neither her-
mitian, nor complete. Yet both combinations AB + BA and i(AB — BA) will
be hermitian, the former being the correlation function G, = G, and the latter
being G — G = G,— G, = G- — G_,; i.e. the spectral function for two-point
function made of A and B.

From products of three hermitian operators one can form even more
hermitian combinations, e.g., ABC+ CBA, BCA+ ACB, CAB+ BAC,
i(ABC — CBA), i(BCA—- ACB), i(CAB —BAC) and various linear com-
binations of them. In the classical limit averages of first three combinations
will give the same result, but they differ from each other in high orders of
quantum corrections. To our understanding this concerns not yet completely
solved problem of operator ordering in quantum-classical correspondence.
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One needs supplementary physical consideration to make choice. Since in the
fi =0 limit all products of the same set of operators, including partially or
fully symmetrized products, lead to the same average value, we make the
following fundamental assumption: in the quantum case the quantity which
corresponds to the average of the product of dynamic variables in (3.6) is just
that component of G whose subscripts are all equal to 2. For the two-point
function Gy, it is the fully symmetrized correlation function %), but G, G,
etc., are only partially symmetrized averages.

Thus we shall consider all G,=(Q), Gy, G, ..., as functions of the
external field J, to be observable physical quantities. To write down general
expressions for nonlinear response we first extend the definition of external
field J to positive and negative time branches, putting J, = J_ at the end. We
expand CTPGF’s of all orders

G,(1) = (Q" (1)) = (T,(QY(t)Sy o,
G,(12) = K T,(Q"(HQ"2))o = —KT,(Q(DQ'(1)S, ), 3.7
G,(123) = (DX T,(Q"(MQ"(2)Q"BN) = (-DXT,(Q'(DQ'2)Q'B3)S; ),

in p;w;:rs of J. All times in (3.7) are taken on the closed time path p.

Chronological operator T, and S-matrix S, on p has been defined in'*").
Here we have

5, =T, exp(~i [ JQ'dx).
P

Therefore, in order to expand (3.7) in terms of J one can proceed from the
generating functional for a ““free field”

Z[I1=4Sp)
and the definition of the generating functional
WIl=iln Z[J] (3.8)

as an analytic functional

x

W= ZI;:—!A,,(I,...,n)J(l)...J(n), (3.9)

n=

where the connected Green’s functions of the “free field”” have been denoted
by

B 5"WIJ)
A R e I R 1 I, (3.10)

“Free field” operator Q(t) in the interaction picture is merely free from the
external field J. It contains all inherent interactions of the system.
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From (3.10) we see immediately that
G,(1)=A,(1)+A,(12)J(2) + A (123} J(2)J(3) +.

3G, (1) 4
G,(12) = EI?Z_) A(12) + A, (123)1(3)+ A (12340 J(3)J(4)+.. G3.11)

8G,(12)
G,(123) = —ahT)- A, (123)+ A,(1234)J (4) +. .

Usually A,(1) is taken to be zero.
To transform into the third set of CTPGF it is sufficient to insert Pauli
matrix o'*):
G()= A(12)(01])(2)+ A(123)(011)(2)(011)(3)w-
G2 = A(12)+A(123)(011)(3)+ A(1234)((r,I)(3)(mJ)(4)+ (3.12)

G(123) = A(123) + A(1234) (o )@ +. . .,

According to the discussion at the beginning of this section we have to
retain only the last component in these CTPGF’s, i.e. the component with
subscripts all equal to 2, and put J, =J_=J. In this way we get the general
expressions for nonlinear response:

GA1) = (Q" (1)) = An(12)J(2) + A2|1(123)](2)J(3) +.
Gn(12)= A»(12) + A(123)J (3) + A2211(1234)1(3)J(4) +. (3.13)

6222(123) = A222(123) + A222|(1234)J(4) +... s

In these formulae J(t) is taken on the ordinary time axis. The first two lines of
(3.13) contain results obtained previously in‘) by explicit manipulation of
integrals. In the language of CTPGF the structure of high order terms is
evident.

In accordance with the convention in literature*®) A,;, A1, Az, - - - should
be called response functions of the averaged physical variable to external
field, their Fourier transforms-the admittance function of various order. G,
Gu, ... and Ay, Ay, ... are called nonequilibrium and equilibrium fluctua-
tions of different order, and Az, Axni, A, ... are response functions of
these fluctuations to external field.
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Other components of (3.12), e.g., nonequilibrium retarded function
G2(12) = A, (12) + A, (123)J (3) + 5‘—' Ay (123)J I +. . ., (3.14)

being straightforward extension of the usual definition of linear response

H
a0 =G| (3.15)
to
H
G(12) = ﬁ%.](—l» (3.16)

by dropping the requirement J =0, may just be named nonlinear response
function. The variational derivative in (3.16) means

8(QM 1)) = f G(12)8J(2) d2. (3.17)

In fact, by integrating (3.14) with respect to J one gets the first formula in
(3.13). Consequently, there is no additional information contained in G,; as
well as in those terms, which have disappeared in going from (3.12) to (3.13)
due to putting J, =J_.

Independent functions which may be measured in principle are those listed
in the following table and their high order extensions.

Average 2-point 3-point 4-point
correlation correlation correlation

Without external (A2=10) Axn A Apn
field
Linear response Axy A An Anm
to external field
2nd order response A Ann A A
3rd order response Az Anin Annin Annimn

In this table on each oblique line, from lower left to upper right, there are
components of one and the same G function, so the relations indicated in**")
look very natural.

To sum up, observables in nonlinear response theory are partially sym-
metrized nonequilibrium correlation (fluctuation) functions G, G, G, . . .,
etc., as functions of the external field J, in particular, their initial derivatives

81
1 25762 2 . (3.18)

- . 1I=0

k k k

AZ. 2.
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The possibility to measure them in practice depends on the nonlinearity of the
system itself, i.e., the notability of functions (3.18), and the strength of the
external field J.

4. General considerations on the relations among multi-point response functions

The n-point function G has 2" —1 nonzero components. By imposing
different physical requirements, such as the initial state being in thermal
equilibrium, the time reversal symmetry and so on, one can derive many
relations among these components, including the various extensions of
fluctuation—dissipation theorems to nonlinear case. Generally speaking, there
are four groups of relations to be used. We list them below.

4.1 Exact algebraic relations

The explicit definition of G  (1,2,...,n) contains @-functions, nested
commutators and anticommutators, which satisfy a few exact algebraic rela-
tions. For example, for #-functions, there are normalization and summation
formulae'), and commutators satisfy Jacobi identity and its generalization.
Moreover, the fundamental property (2.4) of CTPGF’s has many equivalent
forms. For instance, it is very easy to rewrite it for the three-point function
either in ‘“‘retarded” combination

HGai+ G+ Goy) = Gyvs — Goe, 4.1)
or in ““correlated” combination

HGia+ Gin+ Gan+ Guy) = Guir + Gy 4.2)
Similarly for the 4-point functions we have

1 G+ G+ Gui) = Gisss + Gipee = Gy — Gy, (4.3)

€Gan+ G+ Gz + Gun+ Gazi+ G+ Goa)) = Gives — Gioo, (4.4)
and

HGon+Gun+ Gun+Gun) = Girir + Govs - + Gy + Gy 4.5)

#Gam+ G+ Gun+ Gun+ Gun+ Gon+t Gun+ Gion) = G + Gar
4.6)

By inspection one easily discovers the rule to write analogous formulae for
multi-point functions. We emphasize that all of them are equivalent to (2.4)
and do not contain new information. Nevertheless, (4.1) and (4.3) were
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derived in%*, using very inconvenient notation and not recognizing them as
identities. They were used by the same author®?) to draw further conclusions
on the relation among multi-point functions.

4.2. KMS condition**")

A basic assumption in response theory consists in the system being in
equilibrium described by density matrix (3.1) for ty, = —c. Introducing time-
dependent external field, the average of operators Q!(t) in the interaction
picture satisfies the following relation (h =1, g = (kT)™")

(QINQitNN = (QItNQI(E +1B))o = e***(QitNQ}(t))s. (4.8)

Owing to time-translational invariance of the equilibrium state, (4.8) can be
written as

(QiHQI0)) = e (Qi0Qi()o. 4.9)

Fourier transform
d(l) —iwl
Qi = [ §2 e Ql(w)
corresponds to replacement 3/dt=>—iw in (4.9)

(QN)Q0)) = e*¢(QUMQ}w)o. (4.10)

This is the so-called KMS*?") condition. For systems with infinite number of
degrees of freedom the range of validity for the KMS condition is wider than
that for the density matrix. From (4.10) follows a relation between com-
mutator and anticommutator:

(Qi(@), Qo = coth (B2 )1Ql(w), Qe @.11)

This is the fluctuation—dissipation theorem for a 2-point function.

We are concerned with the KMS condition and fluctuation—dissipation
theorems, satisfied by multi-point functions. First of all, for any function,
invariant under time translation

F(tl, 12, ey t,,) = F(tl_‘ t,., tz— t,,, v ,0), (4.12)

we have
n a _
2 F=

* Labelled as (2.23) and (2.24) in%).
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or, symbolically after Fourier transform,
> w =0. 4.13)
i=1

Next, let us consider the averaged product of n operators. Transposing the
leftmost operator to the rightmost, one at each time, as we did in deriving
(4.8), we get

(Qi(t)Qxt) . .. Qu(tdd = e FN(Qu1)Qx(13) . . . Qu(ta)Qu(t1))o
= PN Qy(13) Qults) . . . Qi(t) Q)0

= e PIN(Q,(t)Qi(t) - - - Qu-ota-2)Qu-1{ta-1))o-

We can stop at any step, introduce two functions

FOty, .oy tis tists e e s 8) = (Qu(t) - .. Qi) Qia(tivn) - - . Q. (t:))o,

(4.14)
FOty, ot by t) = (Qin(tis) - .. Qu(t)Qu(t)) - - . Qit))o,
and write
FO(ty, ..., t,) = et +p®a, ). (4.15)
After Fourier transform one has the generalized KMS condition
FO(wr, . .., w,) =ePert 49 F g . . w,). (4.16)

Defining two more functions
FO=FO+F®={Qut)... Qt:), Quatix) - . . Qulta)}os
F@=F9—F®=(Qut) ... Qt), Qui(tix1) . . . Qu{tx)]o,
then we have
Fw, ..., o5 0, ., @)
=coth BTt W poy, g, 0. @17)

In fact, relations similar to (4.16) and (4.17) can be written for functions of
more general type, i.e.

FO=(P(Qi(t) - .. Q(t))P'(Qiri(ti1) . . . Qu(ta)o, (4.18)

where P or P’ may denote chronological product T, antichronological product
T, symmetrized product Sym, normal product N or ordinary product (P = 1).
It is clear from the derivation that it is even not necessary to factorize
P’(...)1in (4.18) into n — i factors.
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For 2-point functions the KMS condition relates different components of
the CTPGF, leading to the usual fluctuation—dissipation theorem. In the case
of multi-point functions it can only relate the symmetric and antisymmetric
parts of one and the same component. For example, writing the 4-point
function G, in the form
(=i’

Gur(1234) = 52 (TGHTADY +(TADTGH))

—1)? - -
+EL (FEHT2)—(TAD TG4, (4.19)

and considering the two parenthesized terms as F© and F, respectively, we
would have a relation similar to (4.17). Therefore, KMS condition alone can
not give the fluctuation—dissipation theorem, relating different components of
a multi-point GTPGF. One should impose supplementary constraints on the
system, e.g. require it to be invariant under time reversal.

4.3 Time reversal symmetry

For macroscopic systems time reversal invariance is a very strong con-
straint. It leads to the detailed balance and the existence of ‘‘potential
functions” (see, e.g.,”>) and references cited therein).

Initial state of macrosystem may depend on some external parameters A;
and its dynamics, i.e., the Hamiltonian of the system, may depend on external
fields J;. Under time reversal classical quantities A; and J; transform to

Ai—= €A, Ji—el;, (4.20)

with the signature € or ¢ being + 1.

In quantum mechanics time reversal is described by antiunitary operator R.
In the Schrédinger picture operators do not depend on time explicitly, so
there appears only a signature under time reversal:

Q~>RQR =¢Q, e==1. 4.21)

We shall not describe the details of time reversal. In agreement with?) we
consider a system to be time reversal invariant if its dynamics satisfies

H[IJ)> RK[JIR' = ¥[eJ] (4.22)
and its initial state wave function transforms as

¥ (M) = R¥, (M) = P, (er). (4.23)



GREEN’S FUNCTIONS AND NONLINEAR RESPONSE 233

The last requirement may be imposed on the initial density matrix
po(A) = Rpo(A)R™ = po(€X). 4.24)

Merely a special class of macrosystems satisfy conditions (4.22-4.24), but
for the time being knowledge about systems beyond this class is very poor.
We confine ourselves to this class only.

Denote the averaged product of Heisenberg operators by

Fi . o(t, .t ], 0) = (Q1(,) - . Qlit)o, (4.25)

where the J-dependence comes from #[J] and the A-dependence from po(A).
Using (4.22)—(4.24) it is easy to prove

F, (... t; LN =€ ...6F (=t ...~ seJ, €X)
=€ ... F% i (=t,...—t;€l, €\). (4.26)
The second line in (4.26) is based on an equality
Tr(AB...D)=Tr(D... BA)*,
satisfied by hermitian operators. Since p, and Q are all hermitian, we have
Fi i(ti,...t; LA =Ff (a5 1 0). 4.27)

Components of CTPGF are linear combinations of averaged operator
products, so for systems with time reversal symmetry one can write down the
time reversal properties, using (4.26). For example, owing to

BT(12)) = ere2ex(T(-1-2)-3),
(T(12)3) = e1€265(—3T (=1 -2))7, (4.28)

where only one superscript J has been used to represent both J and A, we can
split 3-point function G.,_ into two parts

G..-(123; 1) = G$,.(123; ) + G4,.(123; ), (4.29)
where

N2
G5.-(123; 1) = GL(-1-2-3; eN) = L (BT (12Y + cicrex(TADI),

40123, 1) = -G (-1-2-3;€e]) = (;21)2 (3T(12)Y - e162eXT(12)3)).
(4.30)

This is another way, different from (4.19), to divide a multi-point function
into symmetric and anti-symmetric parts. Further use of the KMS con-



234 Bai-lin HAO

dition leads to, e.g.

1 — €665 €P3

G§+_(w1w2w3; = 1+ €,6263 P Gi‘+v(w|w2w3; . (4.31)

4.4. Fourier transform and spectral representation

Fourier transform alone does not bring about new information, but it is
more convenient to incorporate KMS condition and time reversal invariance
after performing the Fourier transform. Therefore, we discuss in general the
Fourier transform of n-point functions.

The Fourier transform of a function, invariant under time translation (4.12)
may be written

Flw,...,o00)=278(0+...vw,)F(w,...,.t, =0,..., w,), 4.32)

where in F, the Fourier transform has been carried out only for n—1
arguments and the untransformed argument is written explicitly as #, = 0 with
k taking any value from 1 to n. In other words, the Fourier integral of a
n-point function looks like

d(l)] P d(.ak PP d(l)n —i[w(tj—t)+. . Ao+ (=)
F(t], .’t")IJ' T e JAL S . it - w, (8t
(2m)
XFl(wl" "’tk 207" . "Un)’ (4.33)

where a caret denotes the absent factor.
CTPGF usually contains products of the n-point function and the 6-
function, e.g.,

Fr(t1, by, ts3, ta) = (i) 0(4132)F (1, 13, 13, 1)
Factorizing the #-function
6(4132) = 0(ts— )0t — t3)0(t: — 1), (4.34)

using the representation

+oc
i daQ it
27w ) Q+ie

—®

o) =

and noticing the last time in (4.34) being t,, we use the Fourier transform with
t, =0 and get

_ 1 dQ, d, dQ,
Fi(o1, =0, 03, 09 = 575 j @ T ie)( + i) + 10)

XFilo+02i— Qs t,=0, 03+ 25— 23, ws— 2)).
(4.35)
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Subsequent change of variables passes all the w;-dependence onto the
denominators

Fir(w1, 1, =0, w3, w4)

_ 1 J’ dQ,d02,d; Fi(),— 0, 1:=0,05- (5 Q)

TRAY ) (s Qi tie) ot 01— D Hie)wst o)+ 03— 23+ i€)
(4.36)

the relation between Fg and Fgr being given by (4.32). This is the spectral
representation for one of the terms in a component of CTPGF. It is not
difficult to read out the rule how to write the spectral representation in a
general case*), using the arguments of 6-function to indicate the order.
Integration comes from 6-function. KMS condition and time reversal usually
decrease the number of independent spectral functions.

It is clear at this point that combined use of the above-mentioned con-
sideration may lead to many relations among high order response functions.
This will be done elsewhere in a separate publication with colleagues.

5. Conclusions

We would like to make two remarks in conclusion. Firstly, this paper deals
only with the formal aspects of nonlinear response theory. It bypasses such
fundamental problems as the origin of irreversibility or the condition for a
response function to be different from zero which have been deeply analyzed
by the Brussels school. Actually it is limited to situations, not very far from
equilibrium and does not touch either the question of practical calculation of
response functions for a concrete model. Still it seems useful to have such
formal relations in view of possible future experiments, with which our
second remark is concerned. In a sense most physical experiments measure
responses to one or another disturbance. Development of subtle data acquisi-
tion and processing techniques will bring new impact to the measurement of
nonlinear responses as well as to a deeper understanding of theoretical
relations.

Acknowledgments

It is a great pleasure to express my gratitude to Professor 1. Prigogine and
to the Université Libre de Bruxelles for the kind hospitality which makes the

* Zhao-bin Su first obtained such spectral representations in a slightly different way.



236 Bai-lin HAO

completion of this work an extremely pleasant experience. I would like to
thank Dr. Zhao-bin Su for many clarifying discussions. The financial support
from the Instituts Internationaux de Physique et de Chimie, fondés par E.
Solvay, is also gratefully acknowledged.

References

1) L. Onsager, Phys. Rev. 37 (1931) 405, 38 (1931) 2265.
2) H.B. Callen and T.A. Welton, Phys. Rev. 83 (1951) 34.
3) R. Kubo, J. Phys. Soc. Japan 12 (1957) 570.
4) W. Bernard and H.B. Callen, Rev. Mod. Phys. 31 (1959) 1017.
5) R.L. Peterson, Rev. Mod. Phys. 39 (1967) 69.
6) G.F. Efremov, Sov. Phys.-JETP 28 (1969) 1232.
7) R.L. Stratonovich, Sov. Phys.-JETP 31 (1970) 864.
8) G.N. Bochkov and Yu.E. Kuzovlev, Sov. Phys.-JETP 72 (1977) 238.
9) N.G. van Kampen, Phys. Norvegica 5 (1971) 279.
10) J.W. Halley, ed., Correlation Functions and Quasiparticle Interactions in Condensed Matter
(Plenum, New York, 1978).
11) J. Schwinger, J. Math. Phys. 2 (1961) 407.
12) L.V. Keldysh, Sov. Phys.-JETP 20 (1965) 1018.
13) Guang-zhao Zhou and Zhao-bin Su, Progress in Statistical Physics, Kexue, Beijing (to be
published in chinese) chap. 5.
14) Guang-zhao Zhou, Lu Yu and Bai-lin Hao, Acta Phys. Sinica 29 (1980) 878.
15) Guang-zhao Zhou, Zhao-bin Su, Bai-lin Hao and LuYu, Phys. Rev. B21 (1980) 3855.
16) H. Lehmann, K. Symansik, W. Zimmermann, Nuovo Cimento 6 (1957) 319.
17) Bai-lin Hao, Progress in Statistical Physics, Kexue, Beijing (to be published in chinese) chap. 1.
18) P.A.M. Dirac, The Principles of Quantum Mechanics, 4th ed., sections 10 and 77 (Clarendon,
Oxford, 1958).
19) R. Kubo Rep. Progr. Phys. 29 (1966) 255.
20) G.F. Efremov, Izvestie VUZov-Radiofisika 15 (1972) 1207.
21) P.C. Martin, J. Schwinger, Phys. Rev. 115 (1959) 1342.
22) Zhao-bin Su and Guang-zhao Zhou, Institute of Theoretical Physics, Academia Sinica, preprint
ASITP-80-009 (1980).



