

UNIVERSAL SLOWING-DOWN EXPONENT NEAR PERIOD-DOUBLING BIFURCATION POINTS

Bai-lin HAO¹*Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium*

Received 7 September 1981

The critical exponent Δ , describing the slowing of convergence near period-doubling bifurcations, should be a universal constant with "mean-field" value $\Delta = 1$.

In connexion with the recent discovery of universal properties in period-doubling bifurcations [1–4] and their comparison with scaling and universality in phase transitions [5] we would like to point out that there exists a universal exponent, related to the "critical dynamics" of these bifurcations. In analogue with critical slowing down in phase transitions, the time constant describing the convergence near the k th bifurcation point λ_k behaves like

$$\tau \propto |\lambda - \lambda_k|^{-\Delta}, \quad (1)$$

but this is only an one-sided phenomenon, observable when approaching λ_k from the less-bifurcated state.

Of course, slowing down itself has been a well known fact, since in numerical practice the worsening of convergence has long been considered as a symptom of a nearby instability in the algorithm used.

What might be new is the existence of a universal characteristic for such phenomena.

Let us consider a nonlinear mapping [1] $x_{n+1} = \lambda f(x_n)$ and denote the p th iterate of this function by

$$F(\lambda, p, x) \equiv (\lambda f)^p \circ (x),$$

where $p = m 2^k$ with fixed m in between λ_k and λ_{k+1} in a bifurcation sequence. Without loss of generality we assume that bifurcation occurs when λ crosses λ_k from below. Then, given p (or k), the mapping $x_{n+1} = F(\lambda, p, x_n)$ converges to certain fixed point \bar{x} for $\lambda < \lambda_k$, including all λ_i with $i < k$. Let $x_n = \bar{x} + \epsilon_n$, we

have as usual

$$\epsilon_{n+1} = F'(\lambda, p, \bar{x}) \epsilon_n \quad (2)$$

near λ_k . The convergence condition $|F'| < 1$ breaks down at λ_k , where

$$|F'(\lambda_k, p, \bar{x})| = 1. \quad (3)$$

Assume that $|\epsilon_n|$ diminishes as $\exp(-n/\tau)$, then it follows immediately from (2) that

$$\tau = -(\ln |F'(\lambda, p, \bar{x})|)^{-1} = -\left(p \ln \lambda + \sum_{i=1}^p \ln f'(\bar{x}_i) \right)^{-1},$$

where \bar{x}_i are points forming the p -cycle. Expanding $\ln \lambda$ near λ_k , we get due to (3)

$$\tau = \lambda_k / p(\lambda_k - \lambda), \quad (4)$$

i.e. eq. (1) with $\Delta = 1$. It coincides with the mean-field theory value of Δ in the conventional theory of critical dynamics (for a recent review see [6]).

It would be much more interesting to look for deviations, presumably still universal, of Δ from 1 and look for nonexponential decay of $|\epsilon_n|$ in the vicinity of λ_k . Our preliminary numerical check on a few iterated maps led to a value for Δ very close to 1. Study on systems, described by differential equations, is in progress.

We thank Professors G. Nicolis and M. Suzuki for discussions on critical slowing down in nonequilibrium phase transitions. We are grateful to Professor I. Prigogine for kind hospitality and to the Institut

¹ On leave from the Institute of Theoretical Physics, Academia Sinica, Beijing, China.

Internationaux de Physique et de Chimie, fondés par
E. Solvay, for support.

References

- [1] M.J. Feigenbaum, *J. Stat. Phys.* 19 (1978) 25; 21 (1979) 669.
- [2] B.A. Huberman and J. Rudnick, *Phys. Rev. Lett.* 45 (1980) 154.
- [3] B.A. Huberman and A.B. Zisook, Xerox Palo Alto Research Centre preprint, submitted to *Phys. Rev. Lett.*
- [4] M. Nauenberg and J. Rudnick, UCSC preprint 81/137.
- [5] B. Shraiman, C.E. Wayne and P.C. Martin, *Phys. Rev. Lett.* 46 (1981) 935.
- [6] M. Suzuki, K. Kaneko and F. Sasagawa, *Prog. Theor. Phys.* 65 (1981) 828.