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a b s t r a c t

Using an enlarged alphabet of K-tuples is the way to carry out alignment-free comparison of genomes in
the composition vector (CV) approach to prokaryotic phylogeny. We summarize the known aspects con-
cerning the choice of K and examine the results of using CVs with subtraction of a statistical background
eywords:
lignment-free
hole-genome-based

rokaryote phylogeny and taxonomy
omposition vector
ubtraction procedure

for K = 3–9 and using raw CVs without subtraction for K = 1–12. The criterion for evaluation consists in
direct comparison with taxonomy. For prokaryotes the best performances are obtained for K = 5 and 6
with subtraction and for K = 11, 12 or even more without subtraction. In general, CVs with subtractions
are slightly better and less CPU consuming, but CVs without subtraction may provide complementary
information.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
. Introduction

Phylogeny and taxonomy are not synonyms. However, they are
losely related notions and the former defines the latter as indi-
ated by the Ad Hoc Committee on Reconciliation of Approaches
o Bacterial Systematics in 1987 (Wayne et al., 1987): “There was
eneral agreement that the complete DNA sequences would be the
eference standard to define phylogeny and the phylogeny should
efine taxonomy.” Nonetheless, in order to realize this program
cience had to await the ripening of sequencing and annotating
echnology.

In the heyday of the human genome sequencing project, Carl
. Woese, the pioneer in molecular phylogeny and taxonomy
f prokaryotes, was sober enough to point out that “Genome
equencing has come of age, and genomics will become central to
icrobiology’s future. It may appear at the moment that the human

enome is the main focus and preliminary goal of genome sequenc-
ng, but do not be deceived. The real justification in the long run
s microbial genomics” (Woese, 1999). Indeed, with thousands of

ell-annotated bacterial genomes released and many more emerg-
ng nowadays (see, e.g., The GOLD database, 2014), it is feasible now
o establish a genome-based taxonomy of prokaryotes as expected

y many microbiologists in recent years (Konstantinidis and Tiedje,
005; Klenk and Göker, 2010).
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E-mail address: hao@mail.itp.ac.cn (B. Hao).

1 These authors contributed equally to this work.

ttp://dx.doi.org/10.1016/j.compbiolchem.2014.08.021
476-9271/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article un
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Using whole genomes diminishes the ambiguity and subjec-
tivity associated with choosing sequence segments or genes. It
also circumvents the problem of lateral gene transfer (LGT) as
LGT and lineage-dependent gene loss are merely mechanisms of
genome evolution. However, whole-genome-based phylogeny of
prokaryotes must be alignment-free owing to the extreme diver-
sity of bacterial genomes. Our way of alignment-free comparison
of genomes is essentially a simple extension of the basic nucleotide
or amino acid alphabet to an enlarged alphabet of K-tuples. As
the “best” phylogeny is obtained by using all the protein product
encoded in a genome, we base the following discussion on K-
peptides. This is called a composition vector approach to phylogeny
(Hao et al., 2003; Qi et al., 2004), or, in short, a CVTree approach
according to the name of our web server, of which improved ver-
sions have been published three times in ten years (Qi et al., 2004;
Xu and Hao, 2009; Zuo and Hao, 2014).

The parallel computing power acquired for the latest CVTree3
web server (Zuo and Hao, 2014) allows to carry out comparative
study for much wider range of K with and without subtracting a
background (see Section 2). The results demonstrate the robustness
of the CVTree approach at large, i.e., across many phyla, and at the
bottom, i.e., among strains of one and the same species.

2. Composition vector approach to phylogeny
The CVTree algorithm has been elucidated repeatedly in the lit-
erature (Hao et al., 2003; Qi et al., 2004; Hao and Qi, 2004; Gao
et al., 2006, 2007; Li et al., 2010). Therefore, we only give a brief
description in order to fix the notations.

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Taking all the protein products encoded in a genome, fixing a
mall integer K, and using a sliding window of width K, the num-
er of (overlapping) K-peptides are counted. A raw CV is formed by
aking the appearance frequency fj of the jth peptide as the jth com-
onent ordered lexicographically according to the peptide name in
erms of the 20 amino acid letters. The index j runs from 1 to 20K.
n fact, there are many zero components when K is big enough, say,
> 5.

Suppose from two genomes A and B we have calculated two raw
Vs by direct counting:

= (f A
1 , f A

2 , . . ., f A
20K ) (1)

nd

= (f B
1 , f B

2 , . . ., f B
20K ). (2)

he correlation between these two vectors C(A, B) is defined as a
ormalized scalar product

(A, B) =
∑20K

i=1 f A
i

f B
i√∑20K

i=1 (f A
i

)
2
√∑20K

j=1 (f B
j

)
2

. (3)

hen a dissimilarity measure D(A, B) between the two
pecies/genomes A and B is defined as

(A, B) = 1 − C(A, B)
2

. (4)

ote that C(A, B) varies between −1 and 1 while D(A, B) is confined
etween 0 and 1.

A dissimilarity matrix is obtained by calculating Eq. (4) for all
enome pairs. Then a phylogenetic tree is constructed by using the
eighbour-joining (NJ) algorithm (Saitou and Nei, 1987). Ten years
go, with limited computing power we tried K-values up to 6 (later
xtended to 7). All the resulted trees could not resolve the three
ain domains of life: Archaea, Bacteria and Eukarya. Since all what

escribed above was very simple-minded so many people might
ave tried and failed in similar ways.

The way out was inspired by the theory of neutral evolution of
imura (1983). According the Kimura’s theory many neutral muta-

ions may have left in the genome and in our counting results they
ould play a role as some kind of random background. As muta-

ions happen randomly at molecular level, this background may be
ubtracted or at least be weakened by statistical means.

The probability p(˛1˛2 · · · ˛K) of a K-peptide ˛1˛2 · · · ˛K, where
i is one of the amino acid letters, is defined via its frequency of
ppearance f(˛1˛2 · · · ˛K) (the frequentist’s statistics):

(˛1˛2· · ·˛K ) = f (˛1˛2· · ·˛K )
L − M(K − 1)

, (5)

here L =
∑M

j=1Li is the total number of amino acids in the pro-
eome containing M protein sequences and Li is the length of the
th protein.

We predict the probability of the K-peptide p0(˛1˛2 · · · ˛K) from
he observed number of (K − 1)-peptides and (K − 2)-peptides by
sing a (K − 3)th order Markov prediction:

0(˛1˛2· · ·˛K ) = p(˛1˛2· · ·˛K−1)p(˛2˛3· · ·˛K )
p(˛2˛3· · ·˛K−1)

, (6)

here the three probabilities of (K − 1)-peptide and (K − 2)-peptide
n the right-hand side may be calculated from their frequencies of
ppearance using formulas similar to Eq. (5). The formula (6) may

e “derived” in two ways, either by using the relation between joint
robability and conditional probability plus a Markov assumption
Qi et al., 2004; Gao et al., 2006) or by using a maximal entropy
rinciple (Hu and Wang, 2001). We skip the detailed derivations.
d Chemistry 53 (2014) 166–173 167

The predicted probability may be transformed to a predicted
frequency of appearance according to

f 0(˛1˛2· · ·˛K ) = const × f (˛1˛2· · ·˛K−1)f (˛2˛3· · ·˛K )
f (˛2˛3· · ·˛K−1)

, (7)

where the constant

const =
∑

i(Li − K + 1)
∑

j(Lj − K + 3)

[
∑

i(Li − K + 2)]2
(8)

comes from combinations of denominators in formulas like (5). As
most of the proteins have length much greater than K this numerical
constant is very close to 1.

Suppose for the jth peptide type the predicted frequency of
appearance f 0

j
turns out to be identical to the real count fj, then

one would say that fj does not contain new biological information,
because the (K − 1)-peptides and (K − 2)-peptide used to calculate
f 0
j

may contain biological information but what added to yield f 0
j

was a statistical prediction without any biology. In brief, what mat-
ters is not fj itself but the difference between f 0

j
and fj. We define a

new CV component

aj = (fj − f 0
j )/f 0

j (9)

and replace all components f A
j

and f B
j

in the definitions (1) and

(2) by the corresponding aA
j

and aB
j
. Then the redefined CVs are

used to calculate dissimilarity matrix and to build trees by using
the NJ algorithm. We note in passing that NJ has been proved to
be a robust quartet algorithm (Mihaescu et al., 2009). Using NJ is
considered part of our model. In other words, comparison with
alternative methods of building trees from distance/dissimilarity
matrices does not make a subject of this paper.

Eqs. (7) and (9) define what we call a subtraction procedure. The
aA

j
values are also called “subtraction scores”. It has been shown

(Hao and Qi, 2004) that K-peptides with high subtraction scores
exhibit high species-specificity and help to enhance the resolu-
tion power of the CVTree approach. All our web servers (Qi et al.,
2004; Xu and Hao, 2009; Zuo and Hao, 2014) are implementation
of CVTree with subtraction. The resulted trees are in good agree-
ment with prokaryotic systematics at all taxonomic ranks from
domains down to genera and species and possess high resolution
at the species level and below (Hao, 2011).

Our latest CVTree3 web server (Zuo and Hao, 2014) resides in a
dedicated cluster with 64 cores. It is capable to infer phylogenetic
trees from thousands of genomes for a number of K values, say, from
3 to 9, in just one run. The results are justified by direct comparison
with taxonomy at all classification ranks rather than estimated by
various statistical re-sampling tests such as bootstrapping or jack-
knifing, though the CVTree results can pass statistical re-sampling
tests equally well (Zuo et al., 2010).

As direct comparison with taxonomy is a distinguishing feature
of the CVTree approach, we say a few words worthy of the occasion.
First of all, such comparison was unfeasible at the end of the 1990s,
as whether bacterial proteins contain phylogenetic signal was
questioned (Teichmann and Mitchison, 1999) and whole-genome
phylogeny then was unable to resolve taxa below phyla (Hyunan
et al., 1999). With completion of the second edition of the Bergey’s
Manual of Systematic Bacteriology (The Bergey’s Manual Trust, 2001)
in 2012 prokaryotic taxonomy has reached an unprecedented level.
In the same period the whole-genome-based CVTree approach has
ripened to provide robust and well-resolved phylogeny. A thorough
comparison of both is now a timely and doable task.
Secondly, a central notion in comparing phylogeny with tax-
onomy is monophyleticity of a taxon. In traditional taxonomy
a monophyletic taxon comprises exclusively descendants of one
and the same ancestor, a condition hardly verifiable especially for
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icrobial organisms. Therefore, we use the notion monophyleticity
n a pragmatic manner by restricting to the genomes in the input
ata set. If a tree branch contains exclusively genomes designated
o a certain taxon in the input data then this branch is said to be

onophyletic.
Even in the Bergey’s Manual (The Bergey’s Manual Trust, 2001)

here exist taxa which are manifestly not monophyletic. For exam-
le, the old genus Clostridium Prazwovski 1880 consists of a sensu
tricto monocluster and a few separate clusters. Naturally, one
annot expect a monophyletic branch made from all Clostridium
enomes in CVTrees. If a taxon is monophyletic at certain K, it is
lso said to be convergent at this K. Inspection of taxon convergence
ith varying K provides additional angle to evaluate the phylogeny

axonomy correspondence.

. Known results on the choice of K

Many aspects of how to choose K-values have been explored
ver the years, see, in particular Li et al. (2010). We summarize the
ain known results.

.1. Uniqueness of protein sequence reconstruction from the
onstituent K-peptides

This problem is well understood in the case of a single protein
equence made of L amino acids. For a fixed K the protein is easily
ecomposed into (L − K + 1) pieces of K-peptides. Given this set of
-peptides it is required to reconstruct amino acid sequence using
ach peptide once and only once. How unique is the reconstruc-
ion? The reconstruction is clearly unique if K is big enough. How
bout intermediate Ks? This problem has a natural connection with
he number of Eulerian loops in a graph and may be solved by using
raph theory (Hao et al., 2001; Shi et al., 2007). It also has close rela-
ion to De Bruijn sequences much studied recently in connection
ith assemble of short reads in next-generation sequencing. More-

ver a finite state automaton may be constructed (Li and Xie, 2008)
hich is capable to decide whether a given symbolic sequence has a
nique reconstruction at given K. It turns out that most of naturally
ccurring proteins do have an unique reconstruction at moderate
s, say, from 5 to 7 (Xia and Zhou, 2007).

.2. The range of best Ks

From the first CVTree with subtraction based on 109 genomes
Qi et al., 2004) to the trees based on 2762 genomes studied in
his paper all our calculations have shown that K = 5 and 6 lead to
he best results in the sense of agreement with taxonomy when
sing CVs with subtraction. This empirical observation may be jus-
ified by a simple estimation (Li et al., 2010). The algorithm involves
hree peptide lengths: K, (K − 1), and (K − 2). Longer K-peptides
mphasize on species-specificity, so their number should be rare
s compared to that in a pool of randomly chosen amino acid
equences of the same size, i.e., with L =

∑
iLi amino acids. In other

ords, encountering such a peptide should be a small probability
vent:

L

20K
� 1. (10)

n the other hand, the number of a (K − 2)-peptide that connects
ifferent peptides in the prediction formula (6) should not be small

s compared to that in a random pool. Therefore, we have

L

20K−2
> 1. (11)
K−tuple Length

Fig. 1. Total number of different K-peptides versus K for 152 Archaea genomes.

Taking logarithm on both sides of the above two formulas and com-
bining them, we get

log L

1 + log 2
< K < 2 + log L

1 + log 2
, (12)

(logarithm of base 10 is used for convenience). One may take L = 105,
106, 107 for a typical genome of virus, bacterium, and fungi, respec-
tively. Therefore, we get

3.8 < K < 5.8 K = 4, 5 for viruses,

4.6 < K < 6.6 K = 5, 6 for prokaryotes,

5.4 < K < 7.4 K = 6, 7 for fungi.

(13)

For CVs without subtraction only the lower bounds in Eq. (13)
works. Note that logarithmic estimates are quite tolerant. An
inspection of the Supplementary Material would show these esti-
mates hold in most cases.

3.3. No need to use greater Ks

For a given proteome the total number of different K-peptides
first grows with K but below the exponential 20K. When K gets
larger the total number is limited by a straight line with a negative
slope L − M(K − 1), where M and L have been introduced after Eq.
(5). Figs. 1 and 2 show the total number of different K-peptides
versus K for many archaeal and bacterial genomes, respectively. It
is clear that when K gets large enough the numbers decrease slowly
and all the informative peptides must be already present.

3.4. Triangular inequalities and quasi-metric

The correlation “distance” D(A, B) defined in Eq. (4) may be mod-
ified to (Chan et al., 2010)

D(A, B) = 1
2

(
1 − AT B

||A|| · ||B||

)
= 1

4

∣∣∣
∣∣∣ A
||A|| − B

||B||
∣∣∣
∣∣∣2

. (14)

Clearly D(A, B) is the square of an Euclidian distance. While an
Euclidian distance fulfills the three distance axioms including the

triangular inequality, its square does not necessarily does so. In
fact, our D(A, B) does not guarantee the fulfillment of all triangular
inequalities (Li et al., 2010). It is a kind of dissimilarity measure, not
distance. This kind of dissimilarity measure is sometimes called a
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Table 2
Number of taxa at different ranks.

Taxonomic rank Represented by number of genomes Total

1 ≥2 Mono ≥2 Non-mono

Domains 0 2 0 2
Phyla 11 25 7 43
Classes 19 44 10 73
Orders 45 75 32 152
Families 95 136 45 276
ig. 2. Total number of different K-peptides versus K for 2286 Bacteria genomes.

uasi-metric in the literature (Heinonen, 2001). We note that dis-
ance measures satisfying the triangular inequalities such as the
uclidian distance or L1 or L2 distances do not lead to biologically
eaningful results.
From N genomes one can pick up CN

3 = N(N − 1)(N − 2)/6!
riples and check the fulfillment of the triangular inequalities. For
xample, for N = 1570 genomes as of March 2012, the total num-
er of triangles is 643 750 240. The number of violated triangular

nequalities is shown in Table 1.
We see that the proportion of violated inequalities makes a tiny

raction of the total and there is no apparent association of the vio-
ation with misplacement of species in CVTree. Table 1 shows once

ore that K = 5 and K = 6 yield the best results.

. The CVTree program

With the CVTree algorithm explained above we briefly
escribe the material and software used in this work. The

nput dataset was downloaded from the NCBI FTP site
ftp://ftp.ncbi.nih.gov/genomes/Bacteria) as of 13 January 2014. All
lasmids and other extrachromosomal elements were excluded.
s the management of bacterial genomes at NCBI has been under-
oing reorganization, some strain genomes had to be fetched
rom a subdirectory containing several strains. Excluded also were
iny high-degenarated genomes of some endosymbiont bacteria.
n total we used 165 Archaea and 2589 Bacteria genomes with 8
ukarya genomes as outgroups. The taxonomic distribution of the
rokaryotic genomes is shown in Table 2.

Table 2 needs some explanation. The last column shows that
he 165 + 2589 = 2754 genomes come from 2 domains, 43 phyla,
3 classes, 152 orders, 276 families, 696 genera, and 1499 species.

hese numbers were counted according to the slightly revised tax-
nomy used in the CVTree3 web server (Zuo and Hao, 2014) when
aking comparison of the resulted trees with taxonomy. Take, for

able 1
umber of violated triangular inequalities at various K.

K 3 4 5 6 7

Violations 12 501 415 0 0 3
Proportion (%) 1.87 × 10−3 6.44 × 10−5 0 0 4.6 × 10−7
Genera 411 254 31 696
Species 1202 265 27 1499

example, the last row in Table 2: among the 1499 species, 1202
species are represented by only one genome so must be “mono-
phyletic” by definition; The remaining 292 species contain two or
more genomes, of which 265 are monophyletic at least for one K
value with subtraction and 27 do not form monophyletic branches.

It is remarkable that the taxonomic coverage of sequenced
prokaryotic genomes as reflected in Table 2 is much broader than
the 400 16S rRNA sequences available in 1985 when Carl Woese
and coworkers proposed a phylogenetic definition of the major
eubacterial taxa (Woese et al., 1985). Nevertheless, the taxonomic
distribution of genomes is quite biased toward a few phyla of “prac-
tical” significance and phylogeny-oriented sequencing projects like
GEBA (Wu et al., 2009) are urgently needed.

The trees with subtraction are obtained by using the new
CVTree3 web server (Zuo and Hao, 2014). This web server produces
trees with subtraction for all K = 3 to 9 in a single run and reports
the convergence of taxa with varying K at all taxonomic ranks in
the form of a summary list.

In order to generate trees using raw CVs without subtraction we
have installed another server at http://tlife.fudan.edu.cn/nscvtree/.

The nsCVTree (ns means “no subtraction”) produces all K = 1 to
12 CVtrees without subtraction in a single run and reports the taxa
convergence with varying K at all taxonomic ranks in a summary
list similar to the previous one. The nsCVTree server is qualified as
“unpublished” at present, but it is accessible. For purely technical
reason (limitation by using 64-bit integers) the maximal K is 12 for
the time being. It is being extended to larger K at present time.

The two taxon convergence summary lists produced by CVTree3
and nsCVTree servers are then combined manually to become the
Supplementary Material of this paper.

5. CVTree without subtraction. A comparison

The subtraction procedure was introduced because raw CVs
could not resolve the three main domains of life for K values
up to 6 or 7. What happens for greater Ks? Anyway, longer K-
peptides should exhibit more species-specificity. Equipped with
much stronger computing power now, we are in a position to re-
examine the problem. We have developed nsCVTree server that
uses the raw CVs only, i.e., it does not invoke the subtraction pro-
cedure. The K-value runs from 1 to 12. It turns out that many tree
branches do correspond to monophyletic taxa at greater Ks. In par-
ticular, the three main domains of life is well resolved at K = 11 and
K = 12.

In order to facilitate a thorough comparison of CVTrees with and
without subtraction we have compiled a list of taxon convergence
for all taxonomic ranks. A taxon represented by only one genome is
monophyletic by definition so excluded from the list. The remaining
list of nearly 1000 lines is further shortened. As taxa represented by

two genomes can only have a single topological type at all conver-
gent K, these lines are excluded. From the remaining excluded also
are all entries associated with eukaryotic organisms which served
as outgroups. The final file is given as a Supplementary Material to

ftp://ftp.ncbi.nih.gov/genomes/Bacteria
http://tlife.fudan.edu.cn/nscvtree/
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Fig. 3. Topology type A

his paper. In this file each line consists of four fields. The first field
s a taxon name with number of genomes belonging to this taxon in
he input dataset. The second field summarizes the convergence of
he corresponding branch in CVTrees with subtraction at K = 3 to 9.
he third field is the same in CVTrees without subtraction at K = 1
o 12. The fourth field reflects the topological type of the branching
cheme at the given K by using a single letter.

The remaining list after all is still too big to be scrutinized in a
hort paper like this. Therefore, we only give a few excerpts from
he Supplementary Material and make a few remarks therewith.

The first two lines
how the Archaea and Bacteria forming monophyletic clusters at
= 5, 6 with the subtraction procedure and at K = 11, 12 without

Fig. 4. Topology type B for th
e phylum Thermotogae.

subtraction. Therefore, the three main domains of life are well sep-
arated (the Eukarya outgroup not listed). There are four topological
types designated by letters A to D for Archaea and 6 types desig-
nated by A to F for Bacteria. If interested in the concrete branchings
one may inspect the actual CVTrees. Please note letters in one line
have nothing to do with letters in another line.

From the next, phylum, part of Supplementary Material we pick
up only three lines:

The phylum Aquificae represented by 12 genomes is well-defined
as there is only one topological type at all convergent K values both
with and without subtraction. The phylum Thermotogae is more
interesting. All the 17 genomes represent single-strain species.
Though there are four topological types, they are quite close to each
other. The actual branching schemes are shown in Figs. 3–6 for type
A, B, C, and D, respectively.

e phylum Thermotogae.
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Fig. 5. Topology type C for the phylum Thermotogae.

for th

s
s
b
i
e

Fig. 6. Topology type D

Topologies C and D may be taken as the same at the present
tate of the art of inferring phylogeny, and type A does not differ
ignificantly from C and D. It does not make much sense to judge

etween them. If more definite conclusion is needed one should

nvoke all available methodologies of phenotyping and genotyping,
.g., as described in Moore et al. (2010).
e phylum Thermotogae.

Topology B for K = 4 preserves monophyleticity of the phylum,
but violates the monophyleticity of the genus Thermotoga. For some
inexplicable reason at present the K = 4 case often yields worse
result as compared with other Ks.

The phylum Proteobacteria, represented by the largest number
of 1121 genomes in the input dataset, does not manifest itself
as a monophyletic branch at any K with or without subtraction.
However, the situation does not look so hopeless if one inspects
the next rank below phylum. Four from the five constituent classes
do form monophyletic clusters at some K as listed below:
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Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.compbiolchem.
2014.08.021.
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It seems as if only the class Gammaproteobacteria does not con-
erge at whatsoever K-values. However, a closer inspection reveals
hat this is caused by the insertion of the whole Betaproteobacteria
lass into Gammaproteobacteria, a phenomenon first observed in
he mid 1990s by Olsen et al. (1994) by using 16S rRNA sequence
nalysis. If the Beta and Gamma groups are taken as one monoclus-
er as suggested in (Woese et al., 2000), then one should admit
hat the convergence of the large Proteobacteria branch is more
r less satisfactory given the present status of prokaryotic taxon-
my.

A “worst case” analysis further supports the above estimate. We
ollect all the “worst cases” from the Supplementary Material and
et the following numbers:

Number of taxa not monophyletic for any K with and without
subtraction: 126.
Number of taxa monophyletic at some K with subtraction but
non-monophyletic at K = 1–12 without subtraction: 23.
Number of taxa non-monophyletic at K = 3–9 with subtraction
but monophyletic at some K without subtraction: 8.

The origin of the number 126 is intricate, as the misplacement
f a single species may violate the monophyleticity of a whole lin-
age. Further taxonomic revisions would definitely decrease this
umber, but it is not the goal of the present work. The statement in
he Abstract of this paper that the CVs with subtraction is slightly
etter than that without subtraction is based on the comparison of
he two numbers 23 and 8.

Nonetheless, CVs without subtraction may be of some help
s seen in the following example of Thaumarchaeota, a newly
roposed archaeal phylum (Brochier-Armanet et al., 2008). The
VTree with subtraction supported the establishment of this
ew phylum as long as five related genomes were available.
owever, when there appeared a new genome of Candidatus Cal-
iarchaeum subterraneum in November 2013, the 6 genomes
o longer form a monophyletic cluster in CVTrees with sub-
raction for all K = 3–9. In fact, for K = 5, 6, 7 there is a cluster
(Archaea {51/165}, Caldiarchaeum), Thaumarchaeota {5/6}). In
VTrees without subtraction this cluster holds for K = 7–10. How-
ver, for K = 11, 12 there is a monophyletic branch Thaumarchaeota
6}, supporting the introduction of the new phylum. Therefore,
VTrees without subtraction may play a complementary role

n comparing phylogeny with taxonomy. However, a thorough
omparison of CVTrees with and without invoking subtraction
rocedure should be carried out to greater K-values far beyond
= 12. We expect to summarize this on-going work in the near

uture.
A prominent feature of CVTree approach consists in providing

igh resolution of strains at the species level and below. For the
ime being no other phylogenetic tools can offer comparable reso-
ution together with the ease and effectiveness to generate many
uch subtrees in just a single run. In the Supplementary Mate-
ial there are many convergent species with multiple strains, e.g.,
hlamydia trachomatis {80}, Escherichia coli {62}, Helicobacter pylori
53}, Listeria monocutogenes {39}, Salmonella enterica {44}, Staphy-
ococcus aureus {49}, just to mention a few. The resolution power
f CVTree significantly surpasses that of the 16S rRNA sequence
nalysis. Its implication for clinical microbiology should be further
xplored.

Before concluding we touch on the case of “Sufolobus islandi-

us” which was studied recently as an example of biogeographic
ivergence of archaeal species (Zuo et al., 2014).

The corresponding line in the summary list reads:
d Chemistry 53 (2014) 166–173

The distribution of topological types A to D is similar to the
aforementioned analysis of the phylum Thermotogae. In particu-
lar, the topological types C and D are essentially the same, the
difference being of no biological significance. This result shows
that the K = 6 CVTree with subtraction given in Zuo et al. (2014)
is robust and typical for a whole K range with and without
subtraction.

6. Conclusion

The summary list studied on a few selected examples in this
paper may well serve as a start point of a large-scale compari-
son of prokaryotic phylogeny with taxonomy. However, do not
ask too much from a parameter-free theory like CVTree (the
peptide length K looks like a parameter but actually it is not a
parameter as we never adjust it and the same set of K is used
to construct all trees). Instead, we advocate a polyphasic phylo-
genetic view similar to the “polyphasic taxonomy” (Gillis et al.,
2005). When convergence to monophyletic cluster observes at sev-
eral K values it renders more confidence to the result, though
difference in topological types may not always be interpreted rea-
sonably.

We emphasize that the primary criterion to judge the
meaningfulness of a result should be biological rather than
mathematical. For taxonomy at large, the clear separation of
the three main domains of life is pivotal. For the faithful-
ness of fine branchings at the strain level other phenotyping
and genotyping methodologies (Moore et al., 2010) may be
consulted. For example, the fact that branchings of the many
Escherichia coli strains agree well with the traditional division into
phylogroups is a strong support to the CVTree result (Zuo et al.,
2013).

Supplementary material

The Supplementary Material is a shortened summary of taxon
convergence lists from domain down to species for K = 3–9 with
subtractions and for K = 1 to K = 12 without subtractions. Given at
the end of each line are the topological types represented by single
letters A, B, C, . . ., or by “[Null]” if the taxon does not appear to be
monophyletic at whatsoever K-values. The main conclusion of this
work is based on this Supplementary Material, complemented by
inspection of the actual CVTrees with and without the subtraction
procedure.
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