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We suggest to use subharmonic stroboscopic sampling to resolve high-order bifurcations in a numerical study of driven
nonlinear oscillators. A bifurcation sequence up to the 1024th period has been located in the forced Brusselator by using

this method.

Period-doubling bifurcations, leading to chaotic
motion, have been observed in many nonlinear sys-
tems, driven by an external periodic force [1—4]. In
contrast to nonlinear mappings, i.e. difference equa-
tions, where bifurcations of rather high orders have
been identified with remarkable precision [5—7], it
is much more difficult to resolve them in systems
described by differential equations. With a 8192
points FFT (fast Fourier transform), one can hardly
go beyond the 64th subharmonic without serious
aliasing. The situation becomes even more difficult
when one tries to distinguish chaotic bands and peri-
odicities embedded in them.

We have been using a simple extension of the usu-
al stroboscopic sampling idea [8,9], i.e. to sample
also at the subharmonic frequencies instead of sam-
pling at the fundamental external frequency only.
As an illustration, we report a few results on the
Brusselator [10] with periodic force added:

X=A4-(B+1)X+X2Y +d cos(wt),

. 1
Y=BX - X2Y.

This system has been studied by Tomita and Kai
[1,9] but their work was completed before the up-
surge of papers, triggered by the discovery of uni-
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versal properties in nonlinear mappings [5]. There-
fore, it is interesting to look at it with higher resolu-
tion.

Fig. 1 shows the process of identifying a 5127 pe-
riod, where T = 27/cw. Fig. 1a corresponds to the usu-
al stroboscopic portrait, i.e. sampling X and Y at in-
terval T, Fig. 1b was sampled at interval 87 and we
thus amplified one of the 8 islands seen in fig. 1a.
Further increase of the sampling period to 64 T gave
8 distinct points. The systematic shift of samples
for each point was caused by accumulation of trun-
cation errors and could be reduced by using smaller
integration steps and working in double precision.

By combined use of subharmonic stroboscopy
and FFT analysis we have successfully located a few
rather long period-doubling sequences in (1); an
estimate of the ratio

8y =M = Mt 1) (e1 — Mav2) s ()

where A, denotes w,, or o, depending on which of
w and « is used as control parameter, shows that
most probably they are Feigenbaum [5] sequences.
In table 1, we give an example. To have more com-
parable date the parameter values were taken to be
the same as in ref. [9],i.e.4A=0.4,B=1.2 and &
=0.05.

Being a kind of time series sampling, subharmonic
stroboscopy suffers from the same demerits as FFT,
i.e. nonuniqueness in interpretation and unability
to tell frequencies, higher than the sampling fre-
quency. If the actual period T of the oscillator is in
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T — © Fig. 1. Resolution of a 5127 period; (a) sampling at 17, (b)
JFT82680 79661663 375740331 sampling at 87, (c) sampling at 64T.
Table 1
A period-doubling bifurcation sequence in (1).
n Number of periods Range in w wy 8n
1 1 0.398 20 0.398 205 5.53
2 2 0.39821 —0.71305 0.7130625 4.24
3 4 0.713075 —0.769996 0.769999 8 4.02
4 8 0.77000 - 0.78337 0.783 43S 4.46
5 16 0.78350 —0.786752 0.786 776 4.41
6 32 0.78680 —0.78752 0.787 525 5.40
7 64 0.78753 - 0.78769 0.787 695 4.04
8 128 0.78770 —0.787726 0.787 726 5 4.88
9 256 0.787727 - 0.787734 0.787 734 25
10 512 0.7877345 - 0.7877359 0.787 73595
11 1024 0.787 736
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rational relation to the period T of external force
Ty =(n/m)T, 3

m being incommensurable with # (subharmonic en-
trainment), the stroboscopic portrait at interval T’
gives n points for any m = 1. If n = pg, one can sam-
ple at interval pT or qT and increase the resolution
thereby, but misuse of p, which is not a factor of »,
will add a spurious multiplier p in the number of pe-
riods. To be safe, one should always go from low
order subharmonics to higher ones and compare the
results with FFT analysis. From the practical point
of view the resolution power of subharmonic stro-

1T, (b) sampling at 87, (c) sampling at 64 T,

boscopy is limited only by computer time while the
FFT encounters also storage limitations.

This method appears to be very useful in studying
the chaotic bands in the inverse bifurcation sequence.
Fig. 2a can hardly be distinguished from fig. 1a, but
sampling at 647, i.e. fig. 2c, shows a qualitatively dif-
ferent picture as compared with fig. 1c. This is a pe-
riod 128 chaotic band in the inverse sequence just
beyond the accumulation point of the direct se-
quence shown in table 1.

Using subharmonic stroboscopic sampling, supple-
mented by extensive power spectra analysis, we have
studied the structure of chaotic bands and the sys-
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tematics of periodicities embedded in them. A de-
tailed account will appear elsewhere,
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