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Preface

Perhaps the first question to be touched on in this foreword is why write yet
another book on chaos, since many monographs have appeared in recent years
(see, e.g., Part I of the References at the end of this book, where many mono-
graphs, conference proceedings and collections of papers are listed). While
working on the manuscript I have skimmed through the available literature
with the hope that someone else would have released me from the task. How-
ever, as always I could not get rid of the thought that there exist some gaps
in the literature on chaos. Many monographs authored by pure or applied
mathematicians were competently written, but to a practitioner in physical
sciences, he often feels the “language barrier”. A few excellent books were
written by our fellow physicists, but most were on an introductory level. Many
topics such as the renormalization group approach, the role of external noise,
transient behaviour and characterization of the attractors in laboratory and
computei‘ experiments, and especially, symbolic dynamics as a practical tool
in studying chaos, have not been exposed in sufficient detail.

This book, however, is still an introduction to the study of chaotic behaviour
in simple mathematical models, written by a physicist for those working in the
physical sciences. The models considered are well-known ones, ranging from
one-dimensional mappings to systems of a few ordinary differential equations.
Throughout the book emphasis is laid on the use of symbolic dynamics in an
elementary way, but we touch on a few other methods to study such models.
Symbolic dynamics itself has been a long-studied mathematical topic and is
still largely wrapped in fairly abstract (at least, for non-mathematicians) form.
Most of the experts would agree that for the time being symbolic dynamics

v



vi Preface

might be the only rigorous way to define chaos and perhaps everyone should
start the study of chaos from learning symbolic dynamics, but few practitioners
can carry out this programme properly. We ourselves are learners. What we
have been doing is to make use of a small part of this beautiful theory in a
down-to-earth manner and we are glad to share the experience with colleagues

from other branches of physical science.

The reader may find this book written quite inhomogeneously. Some parts
contain only qualitative discussions, while other parts are furnished with de-
tailed derivations. The author tried to use elementary mathematics and calcu-
lus, and, whenever possible, to rely on physical intuition. Substantial attention
has been paid to numerical techniques in studying chaos, but the use of alge-
braic manipulation languages is also mentioned. I should admit that it is our
intention to present the materials in this way in order to put those topics that
deserve more scrutiny in depth on a more general background.

This book would not be possible without the interactions and communica-
tion with colleagues at home and abroad. There are too many names to be
listed. At least, I would like to express my gratitude to the following scien-
tists: P. Bak, T. Bohr, E. Brézin, Chen Shi-gang, R. Conte, P. Cvitanovic,
Vic. Dotzenko, M. J. Feigenbaum, J. Ford, L. Glass, Gu Yan, G. Gunaratne,
H. Haken, B. Hasslacher, Bambi Hu, Hu Gang, D. K. Kondepudi, C. Y. Liaw,
P. Limcharoen, Liu Ji-xing, A. J. Mandell, G. Mayer-Kress, Ni Wan-sun, G.
Nicolis, E. Ott, G. Parisi, Peng Shou-li, I. Percival, Y. Pomeau, I. Prigogine, L.
Reichl, G. Schmids, Ya. G. Sinai, H. E. Stanley, B. H. Stewart, H. L. Swinney,
C. Tsallis, M. G. Velarde, Wang Guang-rui, Wang Xiao-jing, K. Wiesenfeld,
K. M. Khanin, Xu Jing-hua, J. A. Yorke, K. Young, J. M. Yuan, Zhang Hong-
jun, and-Zheng Wei-mou, for discussions or hospitality or both. I would like
to thank Drs. A. Arneodo, J. Bélair, Ping Chen, J. D. Farmer, G. Casati,
C. Grebogi, He Daren, B. Hess, B. A. Huberman, J. L. Hudson, M. Inoue,
K. Kaneko, H. Mori, K. Nakamura, V. I. Oseledes, R. E. Rapp, G. Riela, D.
Ruelle, T. Tél, C. Tresser, K. Tomita, Y. Ueda, F. Vivaldi, and many others
for providing their publications.

I would like to emphasize that discussions with Dr. Zheng Wei-mou, who

has returned to our team recently, have deepened my understanding of symbolic
dynamics and changed significantly the presentation of Chapters 3 and 4. Still
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I have not been able to take into account all his comments, since a cut-off
point must be introduced otherwise the manuscript would never be finished.
In addition, I must mention my students Zeng Wan-zhen, Ding Ming-zhou, Li
Jia-nan, Lu Li-sha, Zou Chuan-ming, and Yang Wei-ming for I have certainly
learnt more from them than what I could offer.

Special thanks go to Zhang Shu-yu who has taken the trouble with all the
logistics of my research, from the implementation of algebraic manipulation
languages and TEX, to assistance in numerical calculations.

About the reference convention in this book, references to the References
at the end of the book are given as, e.g., Poincaré (B1899), the capital B in-
dicating the first part of the References on “Books, Conference Proceedings
and Collections of Papers”, or Feigenbaum (1980a), addressing a paper in the
second part of the References. A few citations to papers not included in the
References are given in the footnotes. No efforts have been made to clarify the
chronology of one or other statements. In a rapidly expanding and interdisci-
plinary field like Chaos there must have been many rediscoveries of important
facts. It is better to leave these to the historians of science.

During the writing of tais book I have been constantly perturbed by the
limitation of using a foreign language. I apologize for any inconvenience caused
by my broken English, although I have honestly tried to meet the definition of
the latter, as given by H. B. G. Casimir!. Prof. Rainer Radok kindly read the
manuscript and corrected the English. Nevertheless, it is my sole responsibility
for all the mistakes and inexactitudes that still remain in the text.

Our work on chaos has been partially supported by the Division of Mathe-
matics and Physics, Academia Sinica (1983-1985), and by the Chinese Natural
Science Foundation (1986-1988).

The text was typeset by the author using IATEX of Leslie Lamport with
indispensable help from the staff of World Scientific. In particular, I would like
to thank Dr. K. K. Phua, the Editor-in-Chief, and Misses P. H. Tham and K.
Tan, the editors, for their patience and advice.

1H. B. G. Casimir, Scientific American, 194(1956) 96.
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Chapter 1

Mathematical Models
Exhibiting Chaos

Throughout this book we shall use the term “physics” in a broad sense, un-
derstanding it as a synonym for the physical sciences. In this chapter a few
physical systems will be analyzed and modelled by nonlinear equations which
may exhibit chaotic behaviour in a suitable range of the control parameters.
We shall use some of these models in subsequent chapters to show one or other
aspects of a mathematical theory or a certain numerical method, and to gain
deeper insight into the phenomenon of chaos. We start with a question which
has been asked by everyone who comes across the somewhat fuzzy word chaos

in the context of an exact science like physics.

1.1 What Is Chaos?

We should consider the question at least in a threefold way: the phenomencn,
the word, and the science. To begin with the phenomenon, let us recall an old
experiment that has been redone in view of the new understanding of chaos.
In 1831, Faraday observed shallow water waves in a container vibrating
vertically with a frequency w and discovered the occurrence of a subharmonic
component of frequency w/2. Later Lord Rayleigh repeated and discussed this

1



2 1. Models Ezhibiling Chaos

experiment from the viewpoint of parametric resonance in his famous trea-
tise The Theory of Sound (first edition, 1877). Why did the appearance of
subharmonics deserve special attention?

Many experimental apparatus in physics may be viewed as frequency trans-
formers. A system is linear if the frequency components of the input and output
signals coincide, and nonlinear otherwise. In nonlinear systems, higher harmon-
ics as well as sums and differences of the input frequencies appear naturally,
but it is not trivial to have subharmonics. In fact, if the output quantity Qou:
depends on the input Q;, nonlinearly, e.g.,

Qout = aQin + szzn,

and @;, contains a single frequency component, say, Q;, o cos(wt), then Q.
will contain frequency components 2w, w, and 0. If Q;,, is a linear combination
of cos(wyt) and cos(wat), then one can observe in Qout also wy + wy. All these
are a simple consequence of basic relations among trigonometric functions. Fur-
thermore, the appearance of frequency harmonics, sums and differences does
not exhibit a threshold. They present themselves inevitably, perhaps, with
very small amplitude, no matter how weak the nonlinearity I}lay be. The sub-
harmonic observed by Faraday and Rayleigh, however, was a kind of threshold
phenomenon: it appeared suddenly when the nonlinearity reached a certain
magnitude. The appearance of both the threshold and the subharmonic calls
for a highly nontrivial explanation.

In 1981, the Faraday experiment was repeated with modern data acquisi-
tion and analysing systems (Keolian et al., 1981; it contains also a few historical
references). Not only the second subharmonic, but also a sequence of subhar-
monics such as 1/2, 1/4, 1/12, 1/14, 1/186,..., each with its own threshold,
were found. This sequence then turned into a noise-like output with a contin-
uous frequency spectrum. This is just what today people call chaos. 150 years
after Faraday, scientists returned to his experiment, because it had become
clear then that subharmonics usually appear ag the first tone in the overture
to chaos. In fact, in many nonlinear systems, various chaotic states of motion
may be reached via a series of finite or infinite numbers of sharp transitions
(sometimes referred to as scenario or route to chaos) and the final chaotic states
are characterized by a number of quantities that distinguish them from pure
randomness.
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Broadly speaking, to classify various types of time evolution, one may think
of the following possibilities:

1. Purely random processes, e.g., coin tossing.

2. Entirely deterministic processes, e.g., the two body problem in classical
mechanics.

3. Deterministic processes subject to random fluctuations, e.g., Brownian

motion of a pollen particle in water.

4. Seemingly random behaviour in deterministic systems without any exter-
nal stochastic source. It is this category of phenomena that now comes
under the term chaos. ’\

5. Chaotic processes subject to external noise. Any experimental study of
chaos, in laboratories or on computers, must deal with the inevitable
effect of external noise and one must be able to distinguish chaos from
noise.

It is curious enough that chaotic phenomena have been overlooked for centuries.
Once they had been recognized, people began to see chaos everywhere, in
Nature and in laboratories. Indeed, chaotic phenomena are ubiquitous whereas
purely random or deterministic processes occur only as exceptions. The great
time lag in recognizing ¢haotic phenomena might be attributed partially to the
dominance of the deterministic point of view in science ever since the time of
Newton, partially, until the 1960s, to the lack of means to tackle and visualize
the complicated dynamics, i.e., the modern computers with their graphics.
The word chaos appeared as a scientific term in L. Boltzmann’s assumption
on molecular chaos in his derivation of the famous H-theorem more than a
hundred years ago. N. Wiener used the word chaos in the titles of several
papers!. Both scientists, however, used it to denote disorder caused by or
closely related to stochastic processes. The modern usage of the word for
intrinsic stochastic behavour in deterministic systems seems to have appeared

IN. Wiener, “The homogeneous chaos”(1938) and “The discrete chaos”(1943), both

reprinted in Collected Works, ed. by P. Masani, MIT Press, 1976. We thank Dr. P. Lim-
charoen for telling us these references.
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for the first time in the title “Period 3 implies chaos” of Li and Yorke’s 1975
paper. ,

For the time being, there is still no generally accepted definition of chaos.
Indeed, there have been some nice and rigorous mathematical definitions for
stochastic behaviour in dynamical systems, however, usually it is very difficult
to fit a realistic system or model into the mathematical framework. Therefore,
one tends to use a working or operational definition for chaos. If seemingly
random motion occurs in a system, without applying any external stochastic
forces, and the individual output depends on the initial conditions sensitively,
but, at the same time, some global characteristics, (e.g., a positive Lyapunov
exponent or entropy, fractal attractor dimension, etc., see Chapter 6) turn out
to be quite independent of the initial conditions, then one may well be dealing
with chaos. Fortunately, physicists rarely\disagree on what they observe as
being chaos. We shall see that symbolic dynamics provides us with a rigorous
way to define chaos. For the time being, however, it is better to look at concrete
models instead of playing with definitions.

1.2 The Concept of Universality and the
Role of Models

It is appropriate to precede the models by a brief discussion of the deep change
of our attitude towards the role of mathematical models in physics that has
taken place during the last two decades. In order to grasp the essence of a
physical phenomenon, one has to put aside all the secondary factors and to
construct simple, yet nontrivial, mathematical models. Since few models can
be solved rigorously, it is often necessary to resort to further approximations.
It is quite natural, however, to raise questions on the conclusions of a model
study as to what are the peculiarities introduced by the particular model, and
what are the artifacts introduced by the adopted approximation. For many
years, most scientists have paid respect to rigorously solved models, at least
for their mathematical beauty, but have viewed with scepticism approximate
model studies.

Successes in the theory of phase transitions and critical phenomena have
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infused new meaning into the notion of universality. Many natural phenomena
and mathematical models are grouped into classes characterized by similar
behaviour in their parameter dependence, especially, when these parameters are
close to some critical values where abrupt change takes place. As arule, a great
number of degrees of freedom are required to describe the routine evolution of
a more or less complex physical system. The sudden change of the system at a
certain transition point, however, may be characterized by only a few variables.
Generally speaking, it is sharp transition rather than smooth development that
reveals the universal nature of systems. In fact, these remarks are backed by
some weighty mathematical cornerstones which we shall not touch on in this
book. Nevertheless, we shall study models consciously as representatives of
relevant universality classes.

Another factor that has influenced our viewpoint on models is the use of
high-speed digital computers. No matter how difficult a model may be, we are
now able to simulate most of its behaviour on computers, provided, of course,
necessary preéautions are taken. The barrier between analytically solvable
and unsolvable models has been diminishing since the introduction of com-
puters. Nowadays, even analytical manipulation of models benefits from using
computers. In this book, we shall pay due attention to both numerical and

analytical aspects of the use of computers.

Historically, there have been a few models that have greatly stimulated
the development of science. Over the decades, they have served as paradigms
or touchstones for the development of many important theories. In the first
place, we have in mind the two-body problem, starting from the classic Ke-
pler problem of celestial motion, passing through the explanation of Mercurian
perihelion procession in relativistic theory and hydrogen atom spectra in quan-
tum mechanics, culminating in the impact of the understanding of the Lamb
shift on the development of nonrelativistic and relativistic quantum field the-
ory. As a second example, one may recall Brownian motion, which has been
the source of inspiration for the whole stochastic approach in physical sciences,
from Langevin and Fokker-Planck equations, path integral representation of
Wiener to the Onsager-Machlup functional. In studying chaotic behaviour in
nonlinear systems, we are lucky enough to have another such paradigm, namely,
one-dimensional mappings of the interval, with which we start our study.
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1.3 Insect Population and the Logistic Map

The simplest example of a nonlinear dynamical system comes from ecological
models. Suppose there is a seasonally breeding insect population in which
generations do not overlap. Then the average (or total, or maximal, depending
on which quantity is measured) population Y,4; of the next, ie., (n + 1)-th,
generation will be determined enti\l/\ely by the population Y,, of the present

generation, i.e.,

Yo+1 = 8(Ya).
This is a first order difference equation whose simplest possible form is a linear
relation '

Yn+1 = AYn (11)

The linear difference equation (1.1) can be easily solved to yield
Yor1 =Y A",

which states that, if, on an average, each insect lays A eggs and all eggs hatch,
then the population will grow exponentially, provided A > 1. If so, it would
take only a few tens of generations before the globe would be overpopulated
solely by this single species. However, new phenomena come into play when
Y,+1 gets large enough: the insects will fight and kill each other for limited
food, a contagious epidemic may sweep through the population, etc. Either
fighting or touching requires the contact of at least two insects, and the number
of such events is proportional to ¥;2, ; (or, more pedantically, to Y, 1(Yni1—
1), that makes no difference when Y, is large). Taking into account this
suppressin,g,faétor, we can modify Eq. (1.1) into

Yo41 =AY, —BY,2. (1.2)

Despite its apparently simple form, Equation (1.2) may exhibit a quite compli-
cated dynamical behaviour, as we are going to learn in this book (see especially
Chapter 2). Obviously, one of the two parameters A and B in (1.2) can be
scaled out. Usually, one normalizes Y,,; as well and writes (1.2) in one of the
two following forms,
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Figure 1.1: The logistic map.
Ynt1 = 4)‘yn(1 - yn)) y € (0: 1)’ A€ (Oa 1‘) (1'3)
or
Toy1=1—pz2, z € (=1,+1), u € (0, 2). (1.4)

Since both expressions appear frequently in the literature, we will write down

the corresponding transformation for quick reference. In order to go from (1.3)
to (1.4), let

y=(A- 1»/2):c+,1/2,
p=4x(A-1/2).

The reverse transformation reads
1-k + k-1
BT 2w
A= (1—k)/4 where k=1y/1+4pu.
Note that the parameter range A € (0,1) corresponds nonmornotonically to
¢ € (—1/4,2). This difference does not matter as long as we are concerned with

chaotic regimes and the associated periodicities. Sometimes (1.4) is modified
to read

Tng1=p—12241, € € (—p+u), u € (0,2). (1.5)
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Figure 1.2: The bifurcation diagram of the logistic map.

Throughout this book we shall adhere to (1.4). This first order difference
equation describes the time evolution of the normalized population z,. Starting
from a number z,, belonging to the interval / = (—1,+1), it generates in a
deterministic manner the next number z,.; belonging to the same interval
I, ie., the nonlinear transformation flu,z)=1- 4 z? “maps” the interval I
into itself. In the literature Equations (1.3) or {1.4) are often referred to as
the logistic map. The function (1.4) is shown in Fig. 1.1. The letters R and L
denote the Right and Left monotone branches of the map. These letters are the
symbols which we shall be playing with throughout this book {see Chapter 3).
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The sim\plest way to get a feeling regarding the logistic map is to visualize
it on a personal computer with graphics. One covers the parameter range u €
(0,2) by small steps, and calculates, at each parameter value, the iterates of
(1.4) starting from some initial value, say, o = 0.5. After throwing away a few
hundred points as transients (more about transient regimes in Chapter 7), one
displays the remaining points on the screen. In this way we get the bifurcation
diagram in z — p coordinates (see Fig. 1.2). At every given parameter value,
plotted along the z direction, one has the “limiting set” of the mapping. For
¢ < 0.75, the limiting set consists of one point. This is the fized point of the
mapping. For p = 0.75 to 1.25 the limiting set comprises two points, giving
rise to a 2-cycles or period 2 orbit. Then there come consecutively the 4, 8,

.. 2%, ... cycles, forming a period-doubling bifurcation sequence. If one looks
downwards along the u axis, starting from u = 2, then one encounters first a
one-band chaotic region, followed by two, four, ... and 2"-band chaotic regions.
Both sequences meet at a certain po, = 1.40115.... Within a chaotic region,
there are many keriod’ic windows, i.e., lucid intervals where only periodic orbits
exist instead of chaotic output. Moreover, we see many dark lines, either going
through chaotic regions or becoming boundaries of the latter.

A bifurcation diagram is essentially a diagram of attractors, because almost
all initial points are attracted to the points shown in the figure, provided a
sufficient number of transients has been thrown away. Fixed points and periodic
points are trivial attractors, while the darkened vertical segments are chaotic

attractors.

Omne can “zoom” into the details of the bifurcation diagram by changing
to smaller and smaller scales both in  and in p#. Figure 1.3 is a blow-up of
a small part of Figure 1.2, namely, for g = 1.78 to 1.79 and z, = -0.16 to
0.16. Figure 1.4 is a further blow-up of a small part of Figure 1.3, namely,
for 4 = 1.78632 to 1.78650 and z, = -0.02 to 0.02. This process can be
repeated ad infinitum, and the self-similar structure is obvious. If all that we
have described occurs only for some particular map, then we would be dealing
with no more than a rare species in the nonlinear zoo. It is remarkable that
all these features happen to be shared by many nonlinear systems. Both the
global structure of the bifurcation diagram and the numerical characteristics
of many local transitions within the diagram are universal properties. We shall
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Figure 1.3: Blow-up of a small part of the preceding Figure 1.2.

1.78632 p 1.78650

Figure 1.4: Further blow-up of a small part of the preceding Figure 1.3.
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study this bifurcation structure in detail in Chapters 2 and 3.

At this stage, we point out that the logistic map serves as a representative
of a wide class of one-dimensional mappings, i.e., of functions with only one
hump. Those universal properties that depend on there being only one local
maximum, but not on the nature of the maximum, are sometimes called struc-
tural untversality (Derrida, Gervois and Pomeau, 1978 and 1979). Close to the
local maximum at z = z., if the nonlinear function f may be expanded in the

form
f(z)=fmaz_A(x_$c)z+ Ty

those properties, which are shared by maps with one and the same value of z,
are classified as metric universality. Since z values other than 2 require addi-
tional conditions to be satisfied, e.g., 2 = 4 necessitates simultaneous vanishing
of the second and third derivatives of f at z., the z = 2 maps, like the logistic
map, represent the most generic case. They are sometimes called unimodal
maps because they have only one hump. The necessary conditions that these
unimodal maps must satisfy in order to enjoy the universal properties, will be
formulated below in Chapter 2. The apparent simplicity of these maps may be
deceitful, since their dynamics appears to be so rich, that one cannot say even
now that everything related to these maps has been fully understood. In fact,
a substantial part of this book will be devoted to the scrutiny of these maps.

1.4 Thermal Convection, the Lorenz Model
and the Antisymmetric Cubic Map

Many mathematical models have been devised to simulate the turbulent pro-
cesses in the earth’s atmosphere; obviously, this is a problem of great concern to
mankind. A simplified model treats the problem as thermal convection of a fluid
between two infinite plates, subject to a temperature gradient. If one or both of
the horizontal boundaries are considered to be free surfaces, one arrives at the
Bénard problem. If both, the upper and lower, interfaces obey rigid boundary
conditions, the problem reduces to the case first studied by Lord Rayleigh. In
the Boussinesq approximation, the two-dimensional Rayleigh-Bénard problem
leads to a pair of partial differential equations (Saltzman, 1962):
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oy 0AY 61/) 3A¢ + oAy

o4y il I
%s gi 0 5 3y a’” (1.6)
3 = azE_E?s— 3z T2
where 1 is the stream function, # is the deviation of the temperature from the
linear profile, established by thermal conduction only, and the dimensionless
parameters o and R are the Prandtl and Rayleigh numbers, respectively.
If the boundary conditions are taken to be periodic in the horizontal direc-

tions, and free in the vertical direction, one has
Yy=~AYp=0=0, (z=0, 7),
a6
¢=A¢=a'=0a (z=0:7r/a);

where 1/a is the aspect ratio. In this form Equations (1.6) could only be solved
by numerical calculation. Such a brute force approach, however, would keep us
from gaining deeper insight into the mechanism by which the motion becomes
more and more chaotic through a series of transitions. A better way to look into
this type of physics involves truncation of the system and its transformation
into a system of ordinary differential equations, describing the evolution of a
finite number of “modes”. In this manner, Saltzman (1962) and Lorenz (1963)
arrived at their celebrated model of three ordinary differential equations. As
hundreds of papers and a monograph (Sparrow, B1982) have been devoted to
the Lorenz model, instead of going into details, we confine ourselves only to an
outline of how the Lorenz system appears as the first one in an hierarchy of
systems. (Curry, 1978; Zhong and Yang, 1986).

A systematic way of truncation of a system of partial differential equations is
the Galérlkin expahsion that satisfies the boundary conditions from the outset.
In our case, a choice of M sine modes and M + 1 cosine modes in the horizontal

directions and N sine modes in the vertical direction, leads to the expansions:

M N
¥(z, z,t) Z Z Y, sin(amz) sin(nz), _
m=1n=1 (1.7)
(z,2,t) Z Z Byn,n cos(amz) sin(nz).
m=0n=1

On substitution of the above result into (1.6), all spatial derivatives disappear
and one obtains a system of ordinary differential equations for the coefficient



