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The closed time path Green’s function (CTPGF) formalism is applied to the critical dynamics.
The related results for the CTPGF approach are briefly reviewed. Three different forms of
CTPGF’s are defined, transformations from one to another form and other useful computation
rules are given. The path integral presentation of the generating functional for CTPGF’s is used
to derive the Ward-Takahashi identities under both linear and nonlinear transformations of field
variables. The generalized Langevin equations for the order parameters and conserved variables
are derived from the vertex functional on the closed time path. The proper form of the equa-
tions for the conserved variables, including automatically the mode coupling terms, is deter-
mined according to the Ward-Takahashi identities and the linear response theory. All existing
dynamic models are reobtained by assuming the corresponding symmetry properties for the sys-
tem. The effective action for the order parameters is deduced by averaging over the random
external field. The Lagrangian formulation of the statistical field theory is obtained if the ran-
dom field one-loop approximation and the second-order approximation of order-parameter fluc-
tuations on different time branches are both taken. The various possibilities of improving the
current theory of critical dynamics within the framework of CTPGF’s are discussed. The prob-
lem of renormalization for the finite-temperature field theory is considered. The whole theoret-
ical framework is also applicable to systems near the stationary states far from equilibrium,
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whenever there exists an analog of the potential function (“free energy").

I. INTRODUCTION

The closed time path Green’s function (CTPGF)
formalism, developed by Schwinger' and Keldysh,?
has been applied to a number of problems.> As
pointed out by Zhou and Su,*"® this technique is
quite effective in investigating the nonequilibrium
statistical field theory. They used this method to
analyze the Goldstone mode in the steady state for
nonequilibrium dissipative systems such as unimode
lasers in the saturation regi‘on.7 In this article we ap-
ply the CTPGF formalism to study systems near
equilibrium phase transition point. The complete sys-
tem of equations for critical dynamics, including au-
tomatically the mode coupling terms and the Lagran-
gian formulation of the field theory are derived in a
unified way. This provides a microscopic justification
for the semiphenomenological models in critical
dynamics and indicates various possibilities for im-
proving the existing theory.

In the vicinity of the phase transition point the
long-wave fluctuations dominate. Since the corre-
sponding correlation length is much greater than the
thermal wavelength, the quantum effect is ir-
relevant. However, in the quasiparticle description,
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such "purely" classical field theory does not corre-
spond to the Boltzmann limit, but approaches the
"super-Bose" case, i.e., the quasiparticle distribution
n « T/e where T is the absolute temperature (with
F=C=kg=1) and e is the energy for the elementa-
ry excitation. Such a statistical field theory (or fluc-
tuation field theory) has very close analogy with the
usual quantum field theory.

In our viewpoint, the CTPGF formalism is a natur-
al theoretical framework for studying such statistical
field theory. Assuming the equilibrium density ma-
trix for CTPGF we obtain automatically the ordinary
quantum field theory for the low-temperature limit
(T << €) and the existing static critical phenomena
theory for the high-temperature case (7 >> €) (see
Appendix A). If the high-temperature limit near
equilibrium state at the critical point is taken, the
complete system of equations to describe the critical
dynamics follows naturally, as will be shown later in
this paper. By introducing the "response fields," non-
commutative with the basic fields, Martin, Siggia,
and Rose? constructed a classical statistical field
theory (the MSR field theory) in close analogy with
quantum field theory. As will be shown below the
structure of the MSR field theory becomes clearer in
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the framework of CTPGF’s.

In Sec. II we briefly summarize the related results
for the CTPGF’s, some of which are believed to be
new, while others are known or have been published
elsewhere.*® A more or less complete list of formu-
las is given for reference convenience and to make
up for the deficiency that papers*~® were published
only in Chinese. The perturbation theory and the
generating functional formalism for CTPGF’s are
outlined. Three different forms of general multipoint
CTPGF’s are defined and the transformations from
one to another are described. Some computation
rules which greatly simplify the usually complicated
calculations involved when using the CTPGF are
derived. These seem to be highly desirable especially
in view of the fact that the technical complexity is
one of the causes why the CTPGF approach has not
found applications as wide as it deserves. These alge-
braic identities are shown to be the consequences of
some basic properties of the CTPGF, opening new
perspectives not inherent in the ordinary Green’s-
function formalism. The related properties of the
two-point functions are outlined. The Feynman path
integral presentation for the generating functional of
CTPGF’s is used to deduce the Ward-Takahashi
identities under both linear and nonlinear transfor-
mations of the fields.

In Sec. III a short account of the existing theory of
critical dynamics is given. The generalized Langevin
equation, the mode coupling, and the Lagrangian for-
mulation of the classical field theory are briefly re-
viewed to facilitate the comparison with the results in
subsequent sections.

In Sec. IV the generalized Langevin equation for
macrovariables is derived from the equation satisfied
by the generating functional for vertex functions in
the CTPGF formalism by differentiating the micro-
and macro-time scales of variation and averaging
over the micro-time scale. In general form this is
true for both order parameters and conserved vari-
ables. The essential point is to determine the trans-
port coefficient matrix y~'(s) connecting these quan-
tities. The proper form of the equation for con-
served variables can be deduced from the Ward-
Takahashi identities and the linear-response theory.
Comparing this form of equation with the general
one yields two blocks of the y~!(f) matrix, one of
which couples the conserved variables together and
the other couples the conserved variables with the or-
der parameters. The other two blocks of y~!(#), one
of which connects the order parameters and the other
one connects the order parameters with the con-
served variables are determined through symmetry
considerations. It is important to emphasize that
mode coupling terms appear naturally in these equa-
tions. They are not "introduced from the outside," as
in the existing theory. Applications of the general
theory to particular dynamic models are outlined.

In Sec. V the path integral formulation for the
CTPGF’s is used to derive the effective action for or-
der parameters. Through Fourier transformation of
the path integral the generating functional in the ran-
dom external fields is introduced. Averaging over
random fields yields the effective action, the general
properties of which are also discussed. The most
plausible trajectories are described by the time depen-
dent Ginzburg-Landau equations, i.e., generalized
Langevin equations without random forces. Fluctua-
tions around the most plausible trajectories are con-
sidered. There is a possible new way of describing
fluctuations in the CTPGF approach arising from the
fact that field operators may take different values on
positive and negative time branches. It turns out that
with the one loop approximation of random fields
which is equivalent to the Gaussian averaging, and
with second-order fluctuations on different time
branches the existing Lagrangian formulation of the
classical statistical field theory, i.e, the MSR theory
reappears.

In Sec. VI we summarize the main results obtained
and discuss the potential possibilities of the CTPGF
approach with regard to improving the existing theory
of critical dynamics.

In Appendix A the problem of renormalization in
the finite-temperature field theory is discussed. It is
emphasized that near the phase transition point the
leading infrared divergence has to be separated be-
fore the ultraviolet renormalization may be carried
out. The necessity of using noncommutative opera-
tors to describe the time evolution of classical field
theory is also discussed.

In Appendix B a proof is given for two theorems of
Sec. II dealing with transformations among different
forms of CTPGF’s. Further useful examples and
some technical details are described.

Throughout this paper we deal mainly with the ap-
plications of the CTPGF approach to dynamic critical
phenomena, but it is clear from the presentation that
the whole theoretical framework is also applicable to
systems near stationary states far from equilibrium,
provided the long-wave fluctuations are dominant.

II. SUMMARY OF THE CTPGF FORMALISM

A. Definitions and generating functionals
For simplicity we shall consider only multicom-
ponent Hermitian Bose fields ¢(x). Extension to

more general cases is obvious. The Lagrangian den-
sity can be written as

L=Lo(?) = V(@) —@(x)J(x) , 2.1)

where J(x) is the external field.
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CTPGF for ¢ (x) is defined as
G,(1- - m)=(=)""tu[ T (@) - - -P(n)p] ,
2.2

where ? (i) and p are the field operators and density
matrix in the Heisenberg representation, index p indi-
cates a closed time path consisting of positive
(—o0, +00) and negative (400, —c0) branches. The
. time variable f can take values on either branch. T,
is the time-ordering operator along the closed time
path.

The generating functional for the CTPGF’s is de-
fined as

Z(J(x))=tr[T,,[exp[—iL@(x)J(x)”ﬁ] , 2.3)

where the integral is taken over the closed time path
and the integration variable d*x is omitted. In Eq.
(2.3) the external fields on the positive and negative
branches J(x+) and J(x—) are assumed to be dif-
ferent.

Taking functional derivatives with respect to J(x)
we obtain from Eq. (2.3)

3"Z (J(x))

ST s G) lmo @Y

G,(1-+-n)=

In the interaction representation the generating
functional (2.3) can be rewritten as

Z(J(x))

=tr[Tp[expt—iL[V(¢,(x)) +€0,(x)J(x)]]]f>] ,

(2.5)

where ?,(x) satisfies the Euler equation for the free
fields. The interaction term can be taken from behind
the trace operator to obtain

; d
8J (x)

x ["ITp[eXDl—iL‘/’,(x)J(x)”f)' @6

It is easy to show by generalization of the Wick
theorem that

A el

=Zo(J(x)):exp[—i fp%(x)l(x)l: , 2.7

ZU(x) =exp[—i fp v

where : : means the normal product and Zy(J(x)) is
the generating functional for the free field

. (2.8)

Zo(J)=exp[-—7ifj;.l(x)A,(x—y)J(y)

A, being a free propagator.
Substituting Eq. (2.7) into Eq. (2.6), we obtain

.
4

Z(J(x)) =exp

, )
with (2.9)
N(J(x))=tr[:exp[—iLS",(X)J(X)]:[)] (2.10)

as the correlation functional for the initial state.
N (J(x)) can be expanded into a series of successive
cumulants

NU(x) =expl=iWy(J(x)] , (2.11)
Wy(J(x)
.S 1 e N
=”§171~!fp--~fpzv(1 WI) - Jn)
(2.12)
where
N o)==l (1) - 9(n)iple .
(2.13)

It is worthwhile to mention that correlation functions
give contributions only on the mass shell and that
they have the same value on different time branches
because there is no time ordering operator 7, in the
definition (2.10).

The perturbation theory in the CTPGF approach
has the same structure as in the ordinary quantum
field theory with the exception that the time integral
is taken over the closed path, so every Feynman di-
agram is decomposed into 2" diagrams, where # is the
number of vertices. The presence of the initial corre-
lations N(12 - - - ) which vanish for the vacuum
state constitutes another difference from the ordinary
theory. In principle we can take into account all or-
ders of initial correlations, but actually we shall limit
ourselves to the second cumulants.

It can be shown quite generally that the counter
terms for the usual quantum field theory alone are
enough to remove all ultraviolet divergences for the
CTPGF’s under the reasonable assumptions concern-
ing the initial correlations.® We shall not touch this
question here, but it should be mentioned that near
the phase transition point the infrared singularities
have to be separated first, so that the ultraviolet re-
normalization for the CTPGF’s in this case is dif-
ferent from that for the ordinary field theory (see
Appendix A). The generating functional for the con-
nected CTPGF’s is defined as

WU (x)=inZU(x) , (2.14)

Gl =5y

8J(n) | /=0

o ()
(2.15)

— (=) Tle(1) - -
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where ( ). stands for tr( - - - p), with the connect-
ed parts to be taken only.

The normalization condition for the generating
functional is

ZUOCD |y m=r_=s =1, (2.16)
WU Oy, m=r_0=s0=0 . Q.17

It is essential to point out that this condition does not
require J(x) itself to vanish in contrast to the ordi-
nary Green’s function formalism. We shall frequent-
ly make use of this basic property below.

As in the usual field theory, we perform the
Legendre transformation for the generating function-
al

r(@.(x) = Wu(x))—fpf(xm(x) . Q19
where
@ (x)=8W{U(x))/8J(x) . (2.19)

As a consequence of Eq. (2.17), it follows from
J(x) =J_(x) that

Por(x)=0._(x) . (2.20)
From the definition (2.18) we have
(P /69 (x)=—J(x) . (2.21)

This is the basic equation for the vertex functional,
from which the generalized Langevin equation will be
derived.

Taking the functional derivative of Eq. (2.19) with
respect to ¥.(x) and that of Eq. (2.21) with respect
to J(x), we obtain

fp GE(x )T, (32) =—88(x —2)

(2.22)
S r e Gin) ==sfx-2)
where the two-point vertex function
) (¢, (x))
r,(12) s—— ——————— . 2.23
1) = 69.(2) (2.23)

Actually Eq. (2.22) is the Dyson equation for the
CTPGF’s, from which the kinetic equation for the
distribution N and the energy spectrum and dissipa-
tion for quasiparticles can be deduced.*~> Here
8,(x —y) is the & function on the closed time path.
It is defined for arbitrary functions along the closed
time path that

Lrms,G-0n=-rw (2.24)

where x can take values on either branch of time.

Up to now we have considered CTPGF’s for the
basic fields ¥ (x), but all the above statements about
¥ can be repeated word for word for all the compo-
site operators Q(#(x)).

B. Transformations of three sets of CTPGF

In the CTPGF approach we have to deal with three
different forms of functions:

(a) Functions on the closed time path
G,(12 - - - n) with subscript p, which appear under
the integrals over the closed time path and are used
for a concise writing of formulas. (b) The tensor
functions G(12 - - - n) with time arguments on pos-
itive or negative time branches which appear under
the integrals over the single time axis (—oo, +o0) and
are used for constructing the perturbation theory [in
what follows we shall specify them by the Greek sub-
scripts Gag ... (12 <+ - n) with @, B8 - - - =%, etc.].
(c) The retarded, advanced, and correlation func-
tions, representing the physical quantities
G (12 - - - n) which will be denoted by the Latin
subscripts Gy ... (12 -+ - ) with ;... =1,2. Either
of tensors G and G has 2" components.

Some of the relationships among these functions
were given before,>™ but our main point is to gen-
eralize them to the multipoint function case.

To start with the transformations we specify first
our notation. The Pauli matrices are written as

01 0 —i 1 0
TI=of 2T o) 93T -1 -
a3 will appear frequently together with G and o with
G. The real orthogonal matrix

0-La-iop=L]| 7
A TYETSN 1
[ (2.25)
Q' =0"="7|-11

is used for the transformations between G and G.
The multipoint step function © is defined as

Lifey >t >t, ,
01,2, - n) =IO, otherwise . (2.26)
It is the product of the two-point step functions
0(1,2, - - n)=0(0,2)0(2,3) --- 0(n—-1,n)
(2.27)

and can be used to define the T product
T(@(1)e(2) - - - 2(n)
=30(pLpy - p)P(PDP(p) - - @(p,) ,

o’n
(2.28)

where summation goes over all possible permuta-
tions.
The step functions satisfy some relations such as
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the normalization condition
ze(plvPZ e pn) =1 (2.29)
0"

and the sum rule (n > m)

e(1,2, ---m)= 3

(L2 m)

O(pLpy -+ pn)

(2.30)

where P,(1,2 - - -
2 preceding 3, etc.

Going from G, to G we have only to assign
separately the "+" or "—" subscript in accordance to
the value of the time argument. Take two-point
function for example we have

m) means p, with 1 preceding 2,

) G++(12) G.-(12)) [Gr G.
GUD=16_,02 6_a»|=|6- ¢;] @3D
J
Giiyooq, (12 n)=2"/2—1Qi1a1Qi2a2 0 Qia,G

The inverse transformation is given by

Galazi..an(l2 S

n)=2""2Q7 0L - 0L, G

fpiy

- with
12) =—i (T(P(1)® - ¥z
Gr(12) =—i(T(P(1)?(2))) T8 | =0
G(12) == @ ()P(1)) = i—2ED__|
(2.32)
G_(12) =—i (P(1)P(2)) = i— 22 |~
_ ¥z

Gi(12) =—i(T@(1)®(2))) =i

’

where 7 is the inverse time ordering operator.
The transformation proposed by Keldysh? for two-
point functions

G(12) =0G(12) Q™! (2.33)
if written in components
G;(12) = 01,0;8G 4p(12) (2.34)

can be generalized directly to the multipoint case

.‘,,"(12 ceen) . (2.35)

(12 ceen) . (2.36)

We shall see below that Eq. (2.35) contains all possible retarded, advanced, and correlation functions, associated
directly with the physical quantities. The expediency of such choice of numerical coefficient becomes clearer

somewhat later.

The specific features of the CTPGF’s in the form of tensors can be characterized by two theorems, proof of
which and more involved examples will be postponed to the Appendix B.
a. Theorem 1. The component of G with all subscripts equal to 1 vanishes, i.e.,

(12 - n)=0 (237
As consequences of this theorem for one-point and two-point functions we have
G\(x) =0, G (x)=G_(x) , Gu(xy) =0, Gis(xp) +G__(xy)=G+(xy) +G_(xp) (2.38)
or
Gr+Gp=G4++G_ . (2.39)

b. Theorem 2. The other components of G can be expressed as

Gy 20t - 1012 - n) = (=) 3
p 12‘-‘n]
PPy - Py
where
[ o)), ifk+l<p=<n
G @GN =10 o)), f1<p<k ,

O(pipy - -

p)((C - (D) d(p2)), - -+ ). ¢(p,)))

(2.40)

the prime over summation indicating that the cases k +1 < p; < n are excluded from the possible permutations.

The component G, ... (1 - - -

n) corresponds to the case n =k. All the other components of G are defined as
the results of the symmetry properties of the CTPGF’s

G...oyooog o G joe)=G gy

VAR AR B (2.41)
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For the two-point functions we obtain
Gn(xy) =G, (xy) ==i®(t,1,) ([P(x),2(»]) ,
G(xy) =G, () =—i0(1, 1) ([9(y), P(D]) ,
Gn(x) =G (x) =i ({#(x),2(»}) , (2.42)
or in the matrix form |

Gow=|)
xXy) = G, G| - (2.43)

Making use of Eq. ( 2.39), we obtain
G, =Gr—G4=G_—Gj ,
Ga=Gr—G_=G,~Gs , (2.44)
Ge=Gr+Gp=G4+G_ .

The inverse transformation is given by Eq. (2.36)
and can be written as

¢ =160l )+ 160m(l 2
et L) (2.45)

The first theorem is valid for both connected and
disconnected CTPGF’s while the second one in gen-
eral form is applicable only to the disconnected func-
tions. Further details will be given in Appendix B.

These relationships among different forms of the
CTPGF’s will be found quite useful in the applica-
tions. Here we shall illustrate them by several simple
examples and derive some additional computational
rules.

The simplest case for the connection of the
CTPGF’s "in sequence" is the integral of two single
point functions :

Lawe,0=["inp=2"iad, @46

where J=(J,,J_), ¢ = (@ 1,¥,), etc. For short, in
what follows we shall omit the symbol of integration.
The integral for G, can be understood only in the
coordinate presentation, while that for G and G can
be written in both coordinate and momentum space.

The linear response to the external source can be
written as

R,(1) =G,(12)J,(2)
or

R(1)=G12)a3J(2) 2.47)
or

R(1)=G12)a,J(2) .

If we take J4+(x) =J_(x) =J(x), then

0 .
=l6.J| - (2.48)
where the retarded function does appear naturally.
For the product of two-point functions we obtain
D,(12) =4,(13)B,(32) ,
D(12)=4(13)3B(32) , (2.49)
D(12)=4(13)0,B8(32) ,

R,y
R,

or in components

lo D, 0 AaB,

A,B, A,B.+A.B,

D, D, (2.50)

This rule can be generalized to the multiple product
with
Zp=Ap(l)Ap(2) . Ap(n) ,

2=4V54? . A" (2.51)

O_I/i'(n)

A

Z~=A(1)0_1/i'(2) o

The last equation can be written in components as

Z,=A,(1)A,(2) L. A,(") ,

Za=AMAD g0 (2.52)
. ‘

Zc = ZA,(I) . Ar(k—l)Ac(k)Aa(kH) L. Aa(") .
k=1

Similarly, by use of the inverse transformation
(2.36) and (2.45) we obtain

n
Z,_,, _ EA’(I) ..
k=1

. Ar(k—l)A'gk)Aa(k-H) . Aa(”) ,

(2.53)
where u=+— or —+.
If the multipoint functions stand under the integra-
tion, attention has to be paid to the order of the vari-
ables. For example the three-point vertex function

r,(123) =iT,(14)T,(25)T,(36) G,(456)

becomes

'(123) =i(Fa3) (14) (F'o3) (25) (For3) (36) G (456)
(2.54)

and then

F(123)=i(Tay) (14)(Foy) (25) (For) (36) G (456)

or in components

[y =0,

T =il TolaGon

Ty =i(C I, TG+, T TGy +T,T,T,Gr)
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No additional numerical coefficient appears after
transformation in any inherent to the theory relations
among the multipoint CTPGF’s. For example, the
four-point vertex function I'\* is related to the am-
putated Green’s functions W, as’

F[gtt) - Wp(4) +3 Wp(3)Gp(2) Wp(3) )

It can be transformed into

'*(4)

'*3
I 3)

W +3W (rG

and

74 _

~ (3)
r e

- 43wV6,6?

Contrary to this, a numerical factor may appear in
some relations obtained by an artificial contraction.
For example, the relation

A4,(12) = B,(134) C,(342)
becomes

A(12) =5 B(134) (o), (01, C(3'472)

with the coefficient % These examples justify the

choice of the numerical constant 221 in the
transformation formula from G to G [Eq. (2.35)].

The & function on the closed time path §, (x —y)
can be written in the matrix form as

S(x—y)=8(x—y)o; (2.55)
after transformation it becomes
§(x—y)=08(x—y)0'=8(x—y)o, . (2.56)

They are the time derivatives for the step functions
on the closed time path, which in the matrix form are

R 0(12) 0
and
~ 0 -0(21)

The Dyson equation for the CTPGF’s Eq. (2.22)
can be rewritten as
603f=fUJG =_8 ’ G~0'11:‘=I:0'1(~; =—5 .
(2.59)

It is interesting to note that all characteristic
fpature§ of G and G are "transmitted" automatically to
I' and I'. In particular, we have

=0, T+l =T,_+T_; , (2.60)
_ o r,

= r, r.| (2.61)
[,=-G;', I,=-G ", T.=G'G.G," . (2.62)

It is easy to show from the symmetry properties
that for the Hermitian Bose field
~ n n At ’ -
G=(6)"=-0/G01==01G oy , (2.63a)
which after the Fourier transformation becomes

G(I\) =[GA(_k)]T=_O'[GA*(_k)0'1 =‘U|Gf(k)01

(2.63b)

or

G(K) =G (=k) ==03G" (=k) oy =—3G (k) o3,
(2.63¢)

where T means transposition, » complex conjugation,
and T Hermitian conjugatlon All these properties
are transmitted to I and T through Eq. (2.59). Simi-
larly, the specific features of multipoint Green’s
functions are conveyed to the corresponding vertex
functions through relations like Eq. (2.54).

The transitivity of the CTPGF’s also holds for
some connection "in parallel," i.e., the product of
several CTPGF’s connecting two points, which itself
is the constituent of a Green’s function. Consider
for example

5,(12)=G2(12) . ' (2.64)

It may be a self-energy part of G,. In fact by use of
Eq. (2.39) and G,(12) G,(12) =0 we obtain

G, (1) +G3_(12) =G3_(12) +G3,.(12) . (2.65)
Moreover, the matrix

0 G,(G2+3G2)

$SU2) =216 (624362 G.LG2+3(G, +G,)?]

(2.66)

behaves much like a simple G.

C. Further properties of two-point functions

By use of Eqs. (2.59)—(2.61) and (2.36) the two
point vertex function I' can be presented as

I'=—iB(I+0;)—Ao;—Do; (2.67)
with

B=2i(Tp+Tp) =2i(I4+T2) (2.682)

D=5(Tz=Tf)=—5(I,+T,) , (2.68b)

A=5i(T_=Ty) =5i(I,—T,) , (2.68¢)

where B, D, and A4, are Hermitian matrices in the
multicomponent fields or in the coordinate presenta-
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tion. Equations (2.68b) and (2.68c) can be rewritten
as
(2.69a)

(2.69b)

I,=-G'=-D-id ,
[,=—G;'=-D +iA

We shall call D the dispersion part, which deter-
mines the energy spectrum of the quasiparticle, and
call 4 the dissipative part, which describes the decay
rate of the elementary excitation.

The solution of the Dyson equation (2.59) can be
presented as

G =—2(I7'N, - N,17) =3 (G, N, - N,G,) . (2.70)
with

N,=(1+0‘1)(N+(T3), Na=(N—O'3)(I+0'1) s

(2.71)
where N is a matrix satisfying the equation
NT,-T,N=2iB , (2.72a)
or
ND —DN =i(NA +AN) —2iB . (2.72b)

The causal propagator of the quasiparticle with en-
ergy e(k), corresponding to the pole of G, and G,,
can be presented through the density operator n as

Gr=G,(1+n) - nG, . (2.73)
By comparison with Eq. (2.70) we obtain
Nlpoe=1+2n . (2.74)
In terms of n Eq. (2.72b) becomes
nD —Dn=i(nA +A4n) +i(A —B)=i(n4 +An) +T,
(2.75)

which is the kinetic equation for the quasiparticle
density n.° The right-hand side of Eq. (2.75) can be
presented as

(1+mry—nl_ , (2.76)

if the noncommutativity of n and 4 is ignored. It
corresponds to the collision term in the kinetic equa-
tion which vanishes in the thermal equilibrium,; i.e.,

&=1+n

e = eBe®) (2.77)
+

It can be shown’ that /T +=i3+ where X+ is the
proper self-energy part, which itself is proportional to
the probability of emission (+) or absorption (=) of
the quasiparticles per unit time so

iT+>0 . (2.78)

Equation (2.77) shows that in thermal equilibrium
the probability of absorption is greater than that of
emission as expected.

D. Path integral presentation and
Ward-Takahashi identities

Suppose the Lagrangian of the system is globally
invariant under the Lie group G which may contain
the space-time symmetry group as its subgroup. Let
@ (x) be the basic fields, Q (x) order parameters,
which are functions of ¢(x). Both ¢(x) and Q (x)
have several components forming the bases of the
unitary representation for G.

Under the infinitesimal transformations of G

@ (x) =P (x) =9 (x) +8%(x) ,
" ) (2.79)
82(x) = Lolifs — X2 (x)9,19 () =il # (N, |

and

0(x)—Q'(x)=0(x)+80(x) ,
(2.80)

80(x) =L lile = X£(x)8,10 () =il ,0(x) L, .

where {, are a total of ng¢ infinitesimal parameters for
group G and /,, L, are Hermitian representation ma-
trices for the generators of G. X! (x) are associated
with the transformations of coordinates

Xr— Xt =Xe+ XE(X)L, . (2.81)

It can be shown easily that the Lagrangian function
transforms as

£@(x) ;ﬂt‘ —2@(x))
55& G sa;ﬂﬁx) 29(x)
+9,iL (0L, (282
where
JjE(x) = ;—w—;%iso(x) +LXE(x) (2.83)

is the current in direction a. If the Lagrangian is in-
variant under the global transformation of G it fol-
lows that '

5L 3L

“59,0(x)  89(x) I,o(x) . (2.84)

9,74 (x)=ild

The Eq. (2.84) shows that the currents j# (x) are
conserved if ®(x) is the solution of the Euler-
Lagrangian equation. By use of Eq. (2.84), Eq.
(2.82) can be rewritten as

L@ (x)

d*x _ ' .
=L@ (X)) +j#(x),L.(x) .
dx (2.85)

This is the transformation of the Lagrangian under
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the local action of G, if it is invariant under the global action of the same group.
The generating functional for the CTPGF’s can be presented in the form of a Feynman path integral by the

well-known procedure in the field theory

Z(h(x),J(x))=Nf[d€9(x)]exp[iL[S(Q"(x))—h(x)(P(x)——J(x)Q(x)]J(¢(i’,t+=—oo|ﬁ|<p(>‘(,z_=—oo))

(2.86)

N being the normalization constant. What is different from the path integral in the ordinary field theory is that
the integration is carried out over the closed time path and that the boundary conditions are determined by the

density smatrix p.

Transforming integration variable in Eq. (2.86) from % (x) to ¢'(x) under the local action of group G with in-

finitesimal parameters {,(x), satisfying boundary conditions

(L (K t+=—00) =0 L lim {,(Xt) =

| = o

(2.87)

taking into account that the measure [d9¥(x)] does not change under the unitary transformation and that the ma-
trix element of p remains the same as a result of Eq. (2.87), we obtain

. . & _
9,8 ‘P(x)—lah(x) ]Z(h(x),J(x)) h () fo—2—
By use of the commutation relation
)
8h( ) Z=2Z|9.(x)= h(x) (2.89)

Eq. (2.88) can be rewritten as
ba#(j:(x))— 8,4 P.(x) +i8/8h(x)]
=—ilh () [@.(x) +J () Lo0.(0)] -
(2.90)

This is the required Ward-Takahashi identity which
has the same form as in the usual field theory, but

here x can take arbitrary value on the closed time path.

Introducing the generating functional for the con-
nected CTPGE’s

W(h(x),J(x)) =ilnZ(h(x),J(x)) , (2.91)
and the vertex function
[(#.(x),0.(x)) = W(h(x),J(x))
- 9.0 +1(0 001

(2.92)
where

@.(x)=8W/sh(x), Q.(x)=8W/sJ(x) , ~(2.93)
we obtain from Eq. (2.90)

W, . &
ICRETE)

auja

+J(X)[: oW _ (2.94)

s aw
- ’[“"”ﬁ' 5 () )

ah()

+J ()L, 370 )]Z(h(x) J(x) . (2.88)
I
and
. ) 8h (x) )
3#-"‘[‘”‘“‘) +i, [aqoe(y) 50.(») ]
[ sr
= 5.0 Ia<Pc(x)+5Qc( ) ,,QC(X)] . (2.95)

Taking derivatives with respect to h(x), J(x) in
Eq. (2.94) and then putting them to zero, we obtain
successive WT identities for all orders of CTPGF’s.
The similar procedure in Eq. (2.95) with respect to
@.(x), O.(x) will yield WT identities for the vertex
functions.

The equations for the vertex functional ' in the
vanishing external field

8I/8¥.(x) =0, 8I'/6Q.(x) =0 (2.96)

can be used to discuss the spontaneous symmetry
breaking and the Goldstone mode.® It is worthwhile
to note that with the fluctuation effects being taken
into account, the Eq. (2.96) does not have stable soli-
tonlike solution

0.(x) = Qo(X) e~ 2.97)

where Qo(X) is different from zero in a limited
domain of space, or the laser type solution with

00(X) =e®% (2.98)

Up to now we have considered only the linear
transformations of fields under the action of sym-
metry group. In critical dynamics the nonlinear
transformations are also needed.

Suppose ?;(x) are basic fields, transforming under
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the action of an internal symmetry group G (i.e., the
space-time coordinates are not involved) like

Pix) =P =9+ 4Py (2.99)

where {, remain infinitesimal group parameters, but
contrary to the previous case, here 4;,(¥) may be ar-
bitrary function of ¢.

If the Lagrangian is invariant under the global

transformation of G, we have

-C—*-C’=£+j&‘6“(a(x) (2.100)
where

ik = Agi (2.101)

/ aa,.% @

The Ward-Takahashi identity in this case can be
derived also from the path integral presentation of the
generating functional, but an additional term comes
from the Jacobian of transformation. We have

Staodexs|i [ @ —s2))dloly = [ 1avi1exoi 1 +j:a,.ca—J,A.,,(<p)c,,—J<p1](lpl>

= ftavifi+

Xexplif(«c —J<P)](|p|>

where
(Ipl) =(@(X, 11 =—00) |p|@(X,1_=—00))
It follows from Eq. (2.102) that

94 ai
a(P,‘

S
8J,(x)

et 81( )

a”j#[(P,-c(X) +i

If the loop correction terms are neglected, Eq. (2.103)
turns out to be

0,(jt(x))=04,/09,—J Ay .

This equation will be used to obtain the nonlinear
mode coupling term in the generalized Langevin
equation.

(2.104)

III. SUMMARY OF CRITICAL DYNAMICS

There was a recent comprehensive review on the
critical dynamics.!® We give here a brief summary of
the basic results to specify the notations and to facili-
tate the comparison with our results.

The properties of the system near critical point are
described in terms of order parameters and conserved
variables forming a set of macrovariables Q = {Q;,i
=1,2 - n}. The time evolution of these stochastic
variables obeys the generalized Langevin equation

90:(N/dr=K;(Q) +¢&(n) 3.1

where the random force &;(1), reflecting the effects
of all degrees of freedom, not included in {Q;}, is as-
sumed to be Gaussian distributed, i.e.,

(&(0)=0, (&) =208t —1") . (3.2)

The right-hand side function K;(Q) of Eq. (3.1) con-

94 ,,,((P)

Gf[1+ S 1t uta=dides @)2]]
(2.102)
b \
[ox* 57,69 (2.103)
f
sists of two parts
Ki(Q) =—0;8F/8Q; +V,(Q) , 3.3)

where the free energy F =F(Q) as a functional of Q
is dependent on concrete models. The static equili-
brium condition 8§F/8Q; =0 appears to be the
Ginzburg-Landau equation. Therefore Eq. (3.1)
without random force ¢; is called sometimes the
time-dependent Ginzburg-Landau equation (TDGL
for short). In principle, the coefficient matrix o
may have both symmetric and antisymmetric parts.
The symmetric part describes the relaxation, while
the antisymmetric one describes the canonical mo-
tion. If only relaxation effects are considered, o
may be taken symmetric. According to the fluctua-
tion dissipation theorem, the same matrix o; does
appear both in Egs. (3.2) and (3.3). In diagonalized
form o; =constant (dissipative relaxation) for the

nonconserved Q;, and o; =—D;V? (diffusion relaxa-
tion, D; being the diffusion constant) for the con-
served Q;.

The dissipative coupling of different modes can be
described by means of the interaction terms in the
free-energy functional, but the reversible mode cou-
pling appears as stream term V;(Q) in Eq. (3.3).
Usually it takes the form!!

V(Q)-)\Z aQ —A4,;(0) — A,,(Q)SQ . (3.9)
J J
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where the antisymmetric tensor A4; is formed from
the commutators or the Poisson brackets. As a rule,
the linear approximation is accepted, i.e.,

A= Ok > 3.5)

where fj are structure constants for the underlying
symmetry group. The form of the expression (3.4)
itself makes the conservation equation for probability
to be satisfied, i.e.,

(3/80) V(@ e 1=0 , (3.6)

which means that the {Q,} space is divergence free,
ensuring e~ to be the stationary distribution with de-
tailed balance.

It can be seen that the Langevin equation (3.1) is
flexible enough to embody all possible factors. To our
knowledge Eq. (3.1) is "assembled" by different rea-
sonable arguments, so that it remains a kind of
phenomenological model.

The widely accepted approach in the theory of
dynamical critical phenomena is to construct the per-
turbation theory by iterating Eq. (3.1).!? Since there
are two different kinds of "constituent parts"—
response and correlation functions, the structure of
the perturbation theory becomes quite complicated.
The compact presentation of such perturbation pro-
cedure is given by the MSR field theory® mentioned
before. In analogy with the static theory of original
K. G. Wilson’s formulation, Eq. (3.1) can be used to
carry out the renormalization transformation to

o) 6199 _ _¢| 13K
f[dQ][zﬂ_lexp{f[:Q[ Y K(Q) 5] 250

The insertion of factor

exp[-if[l(x)Q(x)+j(x)Q(x)]}

derive the recurrent formulas and to calculate the
critical exponents.

For the last several years the critical dynamics has
been reformulated using the field-theoretical ap-
proach.!> 14

The Gaussian stochastic process £;(f) can be
presented by a stochastic functional.'> Equation (3.1)
can be considered as a mapping of the Gaussian pro-
cess &;(1) onto a more complicated process Q;(1).
Performing such nonlinear transformation of the
Gaussian stochastic functional yields the functional
description for process Q;(1).'® A more direct way is
to start from the normalization condition for & func-
tions under the path integral

f[dQ]a

Since the argument of & function is not Q, but the
whole expression (3.1) it is necessary to insert the
Jacobian A(Q) for the nonlinear transformation from
£ to Q;. Neglecting multiplicative constant A(Q)
turns out to be'®

A(Q)=exp[—%f§!<—(—0~)dx] , (3.8)

ACQ) =1 . (3.7

80 _ .
o~k -¢

5Q

where dx = dXdt is the four-dimensional integration
element. In what follows we shall omit dx for short.
Presenting the & functions in Eq. (3.7) in terms of

the continuous integral, we obtain

1. 3.9

into the integral (3.9) yields the generating functional for the averages of all possible products of the field opera-
tors (in theory of probability it is called characteristic or moment-generating functional):

2,0.) = [ 1401

. exp f iQ
with the obvious normalization condition

25[0,0] =1

The random force £(#) obeys the Gaussian distribution

W (&) wexp(—5£07'8)

80 _ —¢|-
5 K(Q) §]

LK 0 476

250 i(JQ +JQ)] , (3.10)
3.11)
(3.12)

where o' is the inverse of the correlation matrix o. Taking average in Eq. (3.10) over &, we obtain the Lagran-
gian formulation of the generating functional for the classical statistical field theory

2 = [ 1401

a0 1650 +i0
Zﬂ]exp[f[ 2Qa'Q+/Q

80 _ _LB8K _ 0o
5 K(Q)] > iIQ 1JQ“.

80 (3.13)
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In their original paper MSR introduced the "response
fields," Q in our notation, noncommutative with the
basic fields, to simplify the structure of the perturba-
tion theory and the renormalization procedure. As in
the ordinary field theory, the noncommutativity of
the variables is not evident under the path integra-
tion. The introduction of the Q fields doubles the
number of operators. In the CTPGF approach the
time path is divided into positive and negative

J

zt = [ 1aol exp[f[—%[—aa—?——K(Q)—j 0-1[

This expression was first obtained as a stochastic
functional in Ref. 16, but it turns out that Eq. (3.13)
is the more convenient starting point for the critical
dynamics.'> 1

IV. FUNDAMENTAL SYSTEM OF EQUATIONS
IN CRITICAL DYNAMICS

Generally speaking, both order parameter and con-
served variables when regarded as macrovariables are
composite operators of the basic fields. We shall
specify them by somewhat different notation. The
nonconserved order parameters may be written as

Qc,-(x), i=1,2,...,n ,
whereas the conserved variables
Qc,n+a(x)Eqa(X), a=1,2, ..., m ,

where ¢, corresponds to the average of the zeroth
component for the conserved current

da=(id) . 4.1)

or

-Ji(X 1) =—"F——
' 8Q.i(x+) | 0,/ (xH=0,(x-)=0,x7)

branches, so the numberof operators is also doubled.
As will be shown in Sec. V, the Lagrangian formula-
tion of the MSR field theory follows naturally from
the CTPGF formalism. In can be seen also that the
noncommutativity of operators is not an artificial
formal trick, but a necessity to describe properly the
statistical fluctuations. .

The Gaussian integration over Q in Eq. (3.13) can
be carried out to yield

—a—?——-K(Q)—f]——li[g—iJQ” . (3.14)

2 80

l

Without sacrifice of generality both Q. and ¢, can be
taken to be Hermitian. :

Introducing the generating functional of the
CTPGF vertex functions for the composite operators
I'(Q.), we obtain the equations which require to be
satisfied by Q. [Eq. 2.21)]; i.e.,

3/8Q.:(x)=—J(x), i=1,2, ... ,n+m . 4.2)

After taking the variational derivatives one puts
Ji(x+) =J,(x=) =Ji(X,t), from which it follows
[from Eq. (2.19)] that Q. (x+) = Q,;(x—) = Q;(X,1),
where J;(X,t), Q,(X,t) are functions defined on the
usual time axis (—oo, +00). We next show that Egs.
(4.2) lead to the generalized TDGL equations under
the assumption that Q; are smoothly varying func-
tions of time.

Suppose the macrovariables Q,(X, 7) to be known
at the moment 7. At the moment ¢ following closely
after 7 the left-hand side of Egs. (4.2) can be ex-
panded. If x sits on the positive time branch, we
have

+ [ Tyen10)(5.0) 0,7, Dy |, 3)

where T',;(x,p) are two-point retarded vertex functions after taking Qc+=0Q.—= Q. If x sits on the negative
branch of time, the same is true due to Eq. (2.60) I', =T, —T,_=T_,—T__. Since Q,(¥,¢) in Eq. (4.3) varies

smoothly with time, to the first order of (1, —7) we have

0i(7.4) = Q;(¥,7) =(1, —7)80;(V, 7) /o7 .

(4.4)

Substituting Eq. (4.4) back into Eq. (4.3) and taking into account that in the limit t =¢ — 7

T : -, = ) -
(XY, 1) =~ 'Ll_fflffdfy('y —t) T (R, 7.8) = "é?o"rrij(x’ Y. ko, T)Iko-o , (4.5)
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where T',;(X,¥,ko, 7) are Fourier transforms with
respect to (. —1,) taken at the average time
T——(r +1,) = 7, we obtain

+J (1) (4.6)

Q(T
‘Y(T) o 8Qc+ =00

Here the matrix notation is used and y;(X,¥, 7 ) are
considered to be matrix elements with subscripts / X

3397
and j Y.
For the moment let
- oI
. = 4.7
(% ) 830+ | Q=@ —m0(™ @7

and we calculate the functional derivative of /;, con-
sidering it as a functional of functions Q (X, 7) with
three-dimensional argument X

|
M=fd7d" 3T 8Qu(z+) 8T 8Qu(z—)
80;(v, 7) 180(xH)80u(z4) 50,(7,7)  80u(x+)8Qu(z=) 50,(7, 1)
where
_80u(2) G o=
30,(¥,7) | %+ 0 _~o(n =23 (¥=7)

Thus we obtain

0,,=0,_=0(x) ’

8[1()—(., T)/SQI(V, T) = F++,‘j(7(, ?’,k0=0, T) - F+..,'j(?, Y,k0=0, T)

where the ko =0 components of Fourier transforms appear as in Eq. (4.5).

It can be shown in the same way that

31,(7, 7)/8Qi(X, 7) =T 4y;i (V. X, ko=0,7) =T 4_;i(¥, X, ko=0, 7)=T4+4;(X,¥, —k0=0,7) =T_4;(X,¥, —ko=0,7) ,

where the symmetry properties of I" following from Eqs. (2.59) and (2.63) are used. The difference

SI,(X, 81;(y, .
o) _BAY.D) tim [Ty (X,3, ~ko, 7) = Ty (%, T.ko, 7)) 4.8)
3Q;,(v,7)  8Qi(X,7) ko~
[
vanishes due to Eq. (2.77), i.e., pative part of the vertex function 4 = %i (r_,—-ry2)
T =exp(—Bko)T_4 Eq. (2.68¢) satisfies the condition
(4.12)

near thermal equilibrium, so that there exists a func-
tional F(Q,(X, 7)) with

(X, 7) ==38F/80:;(X, 1) 4.9
Equation (4.6) can be rewritten as
v(7)9Q(7)/9r=—8F/8Q(7) +J(7) (4.10)

If the macrovariables Q (7) do not change with
time in the external field J, i.e, in the stationary
state, then

3F/8Q =J . 4.11)

Hence F is the effective free energy of the system
and Eq. (4.11) is the Ginzburg-Landau equation,
determining the stationary distribution of macrovari-
ables.

For systems in stationary states far from equilibri-
um expression (4.8) is equal to zero only if the dissi-

lim A4;(X,V,ko,t) =0 .
k0-0

In this case /; can also be written as a variational
derivative of the free energy or effective potential.
Some of the stationary states satisfying the so-called
"potential conditions," provided by the detailed bal-
ance, as discussed by Graham and Haken,!” must be-
long to this category.

In the vicinity of all stationary states with the po-
tential functions F Eq. (4.10) constitutes the system
of time-dependent GL equations, but they are much
more general than the TDGL equations in the usual
sense since the mode coupling terms are also includ-
ed.

It is usually customary to multiply Eq. (4.10) by the
inverse matrix y~'(7) to obtain

90(7) _ y
a7

+J (7 )] (4.13)

.
(r)[ 8Q( )
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Using the symmetry properties of the vertex func-
tions, following from Eqgs. (2.59) and (2.63)

F(k) =TT(=k) = =3 T (=k ) oy =~ T (K o3,

(4.14)

it can be shown that the real part of ', is an even
function of kg, while the imaginary part is an odd
one, so y(?) is a real matrix according to the defini-
tion (4.5).

In accordance with the numeration of the sub-
scripts given at the beginning of this section, the ma-
trix y(7) can be divided into four blocks. Two of
them, corresponding to the conserved variables
Yo%, 85 wand ¥, > can be fixed completely by com-
parison with the WT identities. For the general case,
the proper form of the two blocks associated with the
order parameters can be determined only by the sym-
metry considerations. This will be discussed below.

It is worthwhile to point out that Eq. (4.4) is
equivalent to the Markovian approximation. In prin-
ciple, the original Eq. (4.2) contains in itself the pos-
sibility of considering the memory effects.

Under the action of the symmetry group G of the
system the conserved variables transform as the gen-
erators /% of the group, i.e.,

qa—‘q¢;=qa+i.faﬁy§ﬁqy B (415)

where f4g, are the structure constants of the group
and g are the infinitesimal parameters of transforma-

tion. The order parameters Q; transform as some
representation L of group G

0i— 0/ =0 +iLfL.Q; -

As shown in Sec. II D, if the Lagrangian of the sys-
tem is invariant under the global symmetry transfor-
mations, the WT identities (2.95) are valid on the
closed time path. In the present case, Eq. (2.95) can
be written as

4.16)

(0,78 (@) =i

_o8r . 5T
50, T QI+ apygr (57440

417
where, as before, ' =T(Q,,q,) is the generating
functional of the vertex CTPGF’s for the composite
operators. Putting Q.+=Q.-=Q(7) and let
Jj&={(j&(9)) in Eq. (4.17), we obtain

894/07=V ], —ilJ(X, ) LFQ;(X, 7)

+ fagy/a(X, 7)q,(X,7)] , (4.18)
where J, Q, g, etc., are functions defined on the usu-
al time axis (—oo, +o0).

To determine the conserved currents T‘, we per-
form the following manipulations in analogy with the
procedure used to deal with the thermal perturbations
in the linear-response theory. By introducing an ad-
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ditional artificial external source AJ, superposed on
the original source J, the system is forced to come
into the stationary state aq /Bt =0. In this case, J,,
in Eq. (4.18) changes to j 4, So that

Via—il(J+AJ)LEQ;+ fapy(Jg+AJg)q,1 =0

4.19)
Since the system is in the stationary state, we can use

Eq. (4.11), i.e.,

8F/8Q,=J,+AJ, , 8F/8qa=Ja+AJ, , (4.20)

to replace the source terms J;, J, by the functional

‘derivatives of the free energy F. According to tl;le

linear-response theory the difference between j, and
the conserved current j, without an artificial source

AJ can be written as

Ta=Ta—lagV (8F/3q5—Jg) |, (4.21)
where /,g are the linear transport coefficients. Sub-
stituting Eq. (4.21) into Eq. (4.19) yields

F

VJa—/anz{——Jﬁ Qj+/aﬁya

BQ

(4.22)
Inserting the expression (4.22) for ¥ j, back into Eq.

~ (4.18) leads to the equation of motion of the con-

served variables

044 o5F
=] V2|~ —
or las 8q JB]
| OF
+'__8Q, ,] erJ+faﬁ7l Jﬁ] ]

(4.23)
Comparing Eq. (4.23) with the general equations for
macrovariables (4.13) in the case of conserved vari-
ables, one determines two blocks of y~! matrix

—[1agV i+ if gy, (X, 7) 18 (X —7)
(4.24)
4.25)

[7_1(7)],:?,37':

Ly ' () axiy

Now we turn to the equations for the order param-
eters. If the order parameters Q; form the irreducible
representation of the group G and take small values
near the critical point, y'l can be expanded into a
power series of Q,. It follows from the symmetry
property that

[y ()]~

where o+ 5, not depending on Q;, are determined by
the kmetlc and dissipative characteristics of the sys-
tem. Similarly, by symmetry consideration another
expansion can be written

[y™1()] =ifL§Q)(X, 18P (X=7)+ - -+,
4.27)

=—iL§Q;(X, 7)) (X -7¥)

=Sy et (4.26)

iX, ay
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where the ellipsis represents higher terms of Q, and f
is invariant under group transformations and can only
be a numerical constant in the lowest order of Q;. To
determine the value of f we consider the limit of
vanishing dissipation. In this case the antisymmetric
part of the matrix y(7) in Eq. (4.10) is dominant.
The same is true for the inverse matrix in Eq. (4.13).
Comparison of Egs. (4.27) and (4.25) gives

f=1. (4.28)

Since the first term of Eq. (4.25) is independent of
dissipation, Eq. (4.28) remains valid in its presence.
Generally speaking the expansions (4.26) and (4.27)
may contain other terms, including the crossover in-
teraction of the dissipative and canonical motion. We
shall not touch this problem here. In the approxima-
tion discussed above we obtain the following equa-
tions for the order parameters:

20, _
o7

o|2F _,

30,

Equations (4.29) and (4.23) form the fundamental
system of equations for the critical dynamics. In the
CTPGF approach J, coming from J+=J_, is the real
physical external field. It may contain the additional
random fields, representing the effects of degrees of
freedom, not included in the macrovariables Q;.
Therefore we call this system of equations the gen-
eralized Langevin equations.

The essential point of the above given derivation is
that the mode coupling terms naturally appear in the
generalized Langevin equations. Moreover, they ac-
tually have the form of Egs. (3.4) .and (3.5). To be
more exact, the representation-matrix L, appears in
the coupling terms between the order parameter and
the conserved variable, while the structure constants
fapy appears only in coupling terms among conserved
variables. In the linear approximation of Q;, the first
term of Eq. (3.4) gives no contribution. To be con-
crete, we divide the matrix 4 into four blocks. The
reversible coupling among order parameters may be
ignored, so that 4;=0. The coupling terms with
conserved variables in the equations for the order
parameters 4;,=/L{Q; are independent of g,, so
that 84,,/8q9,=0. The two other blocks,
Agi=—iL§Q; and A= —if ap,q, appearing in the
equations for the conserved variables also give zero
contribution due to the antisymmetric character of
the representation matrix L and the structure con-
stants.

To get the term with derivatives in Eq. (3.4) we
have to start from the nonlinear WT identities
derived also in Sec.II D. In fact, by use of Eq.
(2.104) we can repeat the derivation for the linear
case and obtain the first term of Eq. (3.4). What we
want to emphasize is that Kawasaki’s formula (3.4)
corresponds to the tree approximation in Eq. (2.103),

]—iLU‘-"Q,[—;q—F—la] . (4.29)

so in principle we can go further. Anotheér point is
that the derivative terms, coming from the Jacobian,
appear only for the basic fields, but not for the com-
posite operators which also transform the derivative
terms for the composite operators. Firstly, they may
come from the loop corrections, secondly, and what
is more likely in our opinion, they appear as a result
of changes of measure in the path integral of the ef-
fective action (see the next section).

As a concrete example consider the simplest model
of the isotropic antiferromagnet, i.e., model G in Ref.
10. This system consists of two densities, a noncon-
served order parameter 6 which is a three-
component vector representing the staggered magne-
tization and a conserved density G, also a three-
component vector representing the total magnetiza-

tion of the system. )
From the commutation relations

[qarqﬁ]=ig0€aﬁyqy ’ [Qi:qa]=ig0€ianj » (430)

the structure constants and the representation matrix
can be determined immediately

Sapy=i80€apy » Lij=—igo€ia; , (4.31)

where €., and €;,; are fully antisymmetric unit ten-
sors. Substituting Eq. (4.31) into Eqgs. (4.23) and
(4.29), and bringing together the external field term
and the derivative of the free energy, i.e., changing
F—F—-J,0,—J,0, we obtain

90, 5F 5F
— = —— + i0—
ar ~ 7sg, TS0,
(4.32)
09 5F SF SF
= \vZ I L 2 0. —
97 af 545 80€aij 50, o 80€qpy 54, q, -

By taking o =T, /,g=Nod,p and changing to the vec-
tor notation, we retrieve the system of equations for
model G.!°

Q _ 2L +g06><-8‘§‘ :

or 5 )

Q d 4.33)
24 =‘)~0V2—SLF' +£0Q % 8—.15 +g0q X F .
a7 8q 8Q 8q

The models 4, B, and C are much simpler due to
the absence of the reversible mode coupling. The
other models such as E, F, H, and J models'® and the
SSS model'® can be treated in the same way. We
shall not repeat these simple calculations here.



3400 ZHOU, SU, HAO, AND YU 22

V. LAGRANGIAN FORMULATION OF STATISTICAL FIELD THEORY

Suppose @;, i =1,2, - - - I, are the basic fields of the system, 0,(®),i=1,2, - - -

n + m, are composite opera-

tors representing the order parameters and conserved variables. Some of the basic fields may be order parame-

ters also (as in the case of lasers). For simplicity we take all of them to be Hermitian Bose operators. In what

follows operators will not be distinguished by special notations since their meaning is clear from the context.
Assuming the randomness of the initial phase, the density matrix is diagonal at the moment 7 = 7¢:

(@'(X,70) |pl@" (X, 70) ) = P(P'(X), 1) 8(?'(X, 79) —¢"' (X, 70)) . 5.1

The initial distribution of the macrovariables Q;(x) is given by

P(Q,(X), 79) =tr[8(Q;(x) — Q;(¢(x))) p]l = f [de(x)18(Q:i(x) — Qi(P ()P (P(X), 70) . (5.2)

The generating functional for Q;(¢(x)) [Eq. (2.86)] under the assumption Eq. (5.1) can be written as

ZU(x)) =expl—iWw U (x)]

=trlTp[exp[—ifJ(x)Q(¢(x))]]p]=Nf[d(P(x)]exp[—if[,B((P(x))—JQ((P(x))] 50—

where

(5.3)

8(04—02) = [ 49/ ()8(P(R, 14=10) =9 (RNBO(R, 7_=10) = (NP W' (T), 70) . 5.4)

Multiplying the right-hand side of Eq. (5.3) by the normalization factor of the & function on the closed time path

J 140150~ 05000 -0 (9N =1, )
changing the order of integration to replace Q (?(x)) by Q(x) and using the formula

8(Q(x)—Q(¢(x)))=f[z—d;—]exp[iL[Q(x)—Q(‘P(x))]I(x) , (5.6)
we can rewrite Eq. (5.3) as

z)=N [ 1a0lexp(is.:(0) -1 J s0Ja(0.~00) (5.7)

where

eiseff(g) Ef exp [i fp oI — iW(I)] . (5.8)

Here we are performing the direct and inverse
Fourier transformations of the path integral. Since
the continuous integration is taken over I(x), W (I)
can be considered as the generating functional in the
random external fields. Calculating the integral by
Wentzel-Kramers-Brillouin (WKB) procedure in the
one-loop approximation which is equivalent to the
Gaussian averaging over the random fields, we obtain
the effective action S (Q) for macrovariables.

This is for the case when macrovariables are com-
posite operators. The same is true, if all or part of
macrovariables are basic fields themselves. A new
field can also be introduced by using the & function.
Even if the initial distribution is multiplicative for dif-
ferent components

P(‘P', TO) = HP;(‘P,-’, T()) y

i=1

dl
2

the Fourier transformations for the path integral have
to be carried out simultaneously for all fields, since
for the general case the Lagrangian of the system
cannot be presented as a superposition of contribu-
tions from different components.

We now turn to discuss the general properties of
the effective action Sen(Q).

The generating functional for CTPGF’s in the case
of Hermitian Bose fields satisfies the relations

WU (x),J-CN s 0ms_0 =0 , (5.9)

W*(J (), J_(x) ==WU_(x),J+(x)) . (5.10)

Taking successive functional derivatives of Eq. (5.9)
and putting J+(x) =J_(x) we get a number of rela-
tions between CTPGF’s. It is easy to show by use of
Egs. (5.8) and (5.10) that

Ser (Q4(x),0.(x)) ==Se(Q(x),04(x)) , (5.11)

S0 S is purely imaginary for Q..(x) =Q_(x). Put-
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ting 0 +(x) =Q + AQ+ and taking functional expan-
sion of Eq. (5.11) around Q, we obtain relations
among functional derivatives of different order at the
point Q:

S _ ss |
50.(x) [80-(x) ] , (5.12)
Sri(x,y) = Sg;i( y,x) =_Si;i(y)x) ,
* (5.13)

Sty(xy) =Szi(yx) ==S5i(yx)

where
I

Sry(x,y) = 50.0050,:07) ) (5.14)

etc.

If the system is invariant under the symmetry
group G, i.e., the Lagrangian and the initial distribu-
tion do not change under

@i(x) = @f(x)=U;(g)9;(x) ,
0i(¢) = Qf(9) =V (2 Q;(¥) ,
then
W) =W (), JE=1(x)Vi(g) |
Ser(Q #(x)) =S (Q (X)), Q@) =V,;(2)0)(®) .

This is true if Sy is calculated exactly. In fact, the
symmetry properties of S.g, although related to that
of the original Lagrangian, may be different from the
latter due to the averaging procedure.

If the lowest order of WKB, i.e., the tree approxi-
mation is taken in Eq. (5.8), it follows that

Q=8W/sl , " (5.19)
S.(Q) =-T(Q) . (5.16)

In this case S inherits all the properties of the
generating functional I'[.Q] for the vertex CTPGF’s,
i.e.,

Ser(Q,0) =0 , (5.17)

8Seii/3Q0+] 0 ,=0_=0 =8Se/30-lg,~0_-0 . (5.18)

Sp+Sp=S++5_, (5.19)
8'Serr

il_l(Tp{Qil(l) T Qil(/)]lPl»

(5.20)
where 1Pl means one particle irreducible. According
to Egs. (5.16) and (2.78),

—iS+(k) >0 (5.21)

80, (1) - 80.(D

after the Fourier transformation.
Near thermal equilibrium we have from Eq. (2.77)

S_,j(k)_S+,*j(k)k":0—‘,3kos_,‘j(k) . (522)
0

Up to now we have discussed only the general
properties of the effective action S.(Q). In principle
this can be derived from the microscopic generating
functional W by averaging over the random external
fields; it can also be constructed phenomenologically
in accordance with the required symmetry properties.
We shall now show that in the one-loop approxima-
tion in the path integral over d/ and to the second or-
der macrovariable fluctuations on positive and nega-
tive time branches, the current formulation of MSR
field theory !> 4 is retrieved.

To calculate the integral (5.8) we expand the ex-
ponential factor around the saddle point, given by Eq.
(5.15)

=" —W=-r-41 DA+ - -
E—fPQl =-T 2fPAIW Al
(5.23)

According to the computation rule described in
Sec. II B, £ can be rewritten as

E=-T-1 [ai"o, P oal (5.24)
where |

o [Peowe] (AL

e R VR (5.25)

The result of the Gaussian integration, accurate to
a constant multiplier is

e @ _ e~ T Q| det( oy W(2)0'3) |-t (5.26)
From the Dyson equation (2.59) we have
iSenl Q1 =—iT(Q) ++ trinf? (5.27)
where
PO _ Py T
r.y -

is the two-point vertex function. By use of the
transformation formula (2.33) we have

|detf?| = | dett | = | detT’,|| detT,| = | detI,|? ,
(5.28)
where
T, (xy) =8T/8Q (x)8A(y) , (5.29)
0(x)=3[0+(x) +0_(0)] ,
A = 0400 — 0-(x) (530
As shown in Sec. IV
or _1]|_sr 8r
3a(p) |, 2(80+(» " 80-(p) |,
=—y—a§— 8Q8(Fy) 4 (5.31)
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It can be seen from comparing Eq. (5.31) with Eqgs. Taking J+=J_=/J, in the tree approximation of the
(3.1) and (3.7) that 8°T'/8Q8A is just the transforma- path integral over /(x), we obtain

tion matrix, accurate to the coefficient matrix vy,

from &; to Q;, so the Jacobian can be calculated in

the same way. Taking into account that the square 3S.r(Q) —J(x) = Q
power in Eq. (5.28) exactly cancels out the coefficient 50 N a, Q ’ (5.36)
% in Eq. (5.27) we have finally
. . 1 dK
Sen(Q) ==1T(Q) =3 8de ’ (5.32) which follows from Egs. (4.6) and (5.16). This is
where just the TDGL equation.
We now consider the fluctuations around the most
K =—y7'8F/30 . (5.33) plausible trajectories. In the CTPGF approach, in ad-
dition to the fluctuations in the usual sense, field
In the path integral (5.7) the most plausible path is variables are permitted to take different values in
determined by the equations positive and negative time branches. Changing vari-
= ables in the path integral (5.7) to the usual time axis
2Sur(@/8Qx=J+0x) (5.34) by introducing Q (x) and A(x) according to Eq.
O(X,714=719)=0(X,7_=1¢) . (5.35) (5.30) the effective action Ser can be expanded as

8Serr B3Ser
8Q

5@+, 0-(0) = 5@ (0.0 () + 1 [ |5 A)

+1 fA(x)(S+++S+_+S_++S__)(x,y)A(y)+ -

Denoting
%i(S+++S+-+S-++S__)(x,y) =—y(x)o(xy)y(y) (537
and using Egs. (5.17), (5.32), and (5.36) we obtain
e-fwmx”=f[dQ(x)1[dA(x)1exp[—§fA(x)y(x)o(x,y)m)A(y)+ffy(x)[g? ojae
——f——lf(JAQ +JoA)8(A(X, TO))I R (5.38)

where
Ja=J(x) =J_(x), Jo=71J4(x) +J_(x)]

If we take J, =J and change variables y(x)A(x) — O (x), Joy™' —J the generating functional for the MSR field
theory [Eq. (3.13)] is retrieved. The Gaussian integration over A(x) gives

emiWUGD Nf[dQ(x)]exp[ f[aQ(x) SQS(Fx) —J) o (x»)
90 (y) _ 5 |1 8F
[ or + SQ( y W +1J3 [ fJQ] S

which is the generating functional (3.14). It is interesting to point out that J= %(J++J_) corresponds to the
physical external field, while J =J,—J_ corresponds to the formal source field used for construction of generat-

ing functional.
It can be seen by comparison of Egs. (5.39) and (3.14) that o(x,y) presents the correlation matrix for random

forces. If Q is a smooth function of x, o can be taken as constant

=—(i/4y)(Sp+S;+S++S_)(k=0) . (5.40)
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By use of Eq. (5.19), valid in the tree approxima-
tion, Eq. (5.40) can be rewritten as

a=—(i/2y)(S++S.) . (5.41)
According to the definition of y [Eq. (4.5)], i.e.,
'y=kl(i)t_1.10i(a/ako)r, ,

taking into account that only the dissipative part gives
any contribution, and using Egs. (5.16) and (5.22)
which are valid near the thermal equilibrium state,
we obtain

. 9 i . )
= —A=— _
y kl(l)m() 3Ky 5 kl(l)mo ok (r--ry)

=SipT_=—1iB(S4+5.) . (5.42)

Comparing Eq. (5.42) with Eq. (5.41) yields the fluc-
tuation dissipation theorem

o=2/By ,
which in the ordinary notation is given by
(E(r) (7)) =2TokT8(7—1"), To=1/y .(5.43)

For simplicity we derive here the generating func-
tional for the single component Q. Extension to the
multicomponent case is obvious.

VI. DISCUSSIONS

Summarizing the main results of this paper, we
come to the following conclusions:

(i) The CTPGF approach is a natural theoretical
framework for statistical field theory to describe sys-
tems with dominating long-wavelength fluctuations
such as dynamical critical phenomena. By use of the
CTPGF’s the generalized Langevin equations for or-
der parameters-and conserved variables with mode
coupling terms included in a natural way and the
Lagrangian formulation of the classical field theory
are deduced from a unified point of view. The per-
turbation theory of CTPGF in terms of G functions
has the same structure as that for the ordinary field
theory so it is simpler to deal with. In the current
theory of critical dynamics and MSR field theory the
perturbation expansion is constructed in terms of G
functions with two different types of propagators, i.e.,
the retarded and correlation functions. Therefore,
the structure of such perturbation theory is more
complicated. Another advantage of the CTPGF for-
malism is that the causality is guaranteed automati-
cally. It does not need to be verified order by order,

as in the existing theory."

(i) The noncommutativity of field operators, not
obvious in the path integral formulation, is not a
mathematical trick, but a necessity to describe the
time evolution of the statistical field theory. Even if
the infrared divergence of the terms, coming from
the noncommutativity of operators, is lower than that
for other functions, these terms are still needed when
considering the time-dependent phenomena, since
the infrared divergence of the response function is
weaker than that for the correlation function (see
Appendix A).

(iii) It can be seen from the calculations in this pa-
per what kind of approximations are assumed in the
existing theory of critical dynamics and what possible
ways may be used to improve the current theory.

(a) In the existing theory the transport coefficient
matrix for the coupling terms with conserved vari-
ables is assumed to be antisymmetric; i.e., only
canonical motion is considered. It is possible to
analyze the crossover effects of dissipative and
canonical motions which may occur, in principle, in
the framework of CTPGEF’s.

(b) The one-loop approximation in the path in-
tegral over the random fields corresponds to the
Gaussian averaging. It is possible to go beyond the
Gaussian approximation by calculating higher-loop
corrections in the framework of CTPGF’s.

(c) The current theory of critical dynamics corre-
sponds to the second-order approximation of A(x),
the fluctuations on positive and negative time
branches. In principle higher-order corrections can
be calculated. It may be more convenient to calculate
directly the path integral for Q4+ and Q_, not intro-
ducing A(x) explicitly.

(iv) The renormalization of the existing Lagrangi-
an field theory is quite complicated.!>'* One of the
causes of such complexity lies in the fact that the
number of vertices and primitive divergences is much
greater than the number of coupling constants and
also that Q and Q have different dimensions. It
seems that the renormalization procedure will be
simpler in terms of G functions, since different com-
ponents of Green’s function matrix have the same
infrared divergence.
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APPENDIX A: RENORMALIZATION
OF THE FINITE-TEMPERATURE
FIELD THEORY

As shown by Zhou and Su® for the general case,
the counter terms introduced in quantum field theory
for T =0 K are enough to remove all ultraviolet .
divergences for the CTPGF’s at any temperature.
Other authors (see references cited in Ref. 6) come
to the same conclusion for finite temperature field
theory without resorting to the CTPGF formalism.
This result is reasonable from the physical point of
view since the statistical average does not change the
properties of systems at very short distances and
therefore does not contribute new ultraviolet diver-
gences. What we should like to point out is that in
considering the phase transitionlike phenomena it is
necessary to separate first the leading infrared diver-
gent term and then to carry out the ultraviolet renor-
malization which is different from that for the usual
quantum field theory.

To be concrete, consider the relativistic scalar Bose
field, the CTPGF propagators for which can be writ-
ten as*

1

k) =Ap(k)=
Gasl(K) F(6) k*—m?+ie

G(k) = A_(K)=—2mi8(k2—m)[O(ke) +n ()] ,
G (k) =AL(k)=—27i8(k? —m*) [O(—ko) +n x)1,

1
G-k =850 = —

—m°—ie (AD)

where

n(K)={exple(K)/T1—1}", e(K)=(K +m)" .
(A2)

Near the phase transition point m =0.
e(K)/T<<1, n(k)=T/e(k)>>1 (A3)

for the long-wavelength excitations. Since the n (k)
terms appear together with the 8 function, i.e., on the
mass shell, the integration over frequencies can be
carried out automatically, so the infrared divergence
of these terms is higher than that for other terms by
one order of magnitude. Therefore the marginal
space dimension for renormalizability for finite tem-
perature @* theory is d. =4, not d.=4—1 as in the
case of the ordinary field theory. This is what is

— —2win(K)8(k*—m?) ,

— —2min(K)8(k2—m?) ,

meant by saying "quantum system in d dimensions
corresponds to the classical system in d +1 dimen-
sions."

What has been said above can be verified explicitly
by calculating the primitive divergent diagrams for
mass, vertex, and wave function renormalization,
carrying out the frequency integration, and taking the
high-temperature limit 7 >> e(k) to retrieve the
results which are identical with that of the current
theory of critical phenomena.?’ It is much easier to
verify this by use of Matsubara Green’s functions,
retaining only terms w, =0 in the frequency summa-
tion.

Some investigators of finite-temperature field
theory improperly use the renormalization constants
for the T =0 K case to study phase transition related
phenomena. Since the high-temperature limit has
been taken for the case of phase transition both rela-
tivistic and quantum effects are unimportant. The
only possible exception is phase transition near 7 =0
K, where both statistical and quantum fluctuations
play their parts. As far as phase transition is con-
cerned the ordinary field models cannot give anything
new beyond the current theory of critical phenomena.
(The situation for the nonabelian gauge models is
not quite clear.)

The noncommutativity of operators is not essential
for the static phenomena, that implies the four prop-
agators in Eq. (A1) may be replaced by the correla-
tion function —2in (kK)82(K?—m?). This is not the
case for dynamic phenomena. The first term of G4+
and G__ comes from the inhomogeneous term of
Green’s function equation, i.e., the commutator. If
only the leading infrared divergent terms are retained
the four propagators become equal to one another, so
that the retarded function

G,=G++—G+_=0

Therefore the retarded Green’s functions are less
infrared divergent than the correlation functions. To
treat them properly, the noncommutativity of opera-
tors has to be taken into account, even though this is
a "purely" classical field theory. It is easy to show
that all these properties illustrated with the free pro-
pagators remain true for the renormalized propaga-
tors.

As mentioned in the Introduction, the high-
temperature limit of statistical field theory corre-
sponds to the "super Bose" limit, but not the
Boltzmann limit. Usually we consider the classical
fields to be commutative, since unity can be ignored
in comparison with » which is large. If unity cannot
be neglected in the phenomena under study we have
to start with the noncommutative operators. This is
one of the reasons why statistical field theory and
quantum field theory have so close an analogy. The
physical implications of this analogy are discussed
elsewhere.?!



APPENDIX B: FURTHER RESULTS ON
TRANSFORMATIONS OF CTPGF

The main results concerning the transformations of
different forms for CTPGF’s are described in Sec.
11 B. Here we shall prove the theorems (2.37) and
(2.40), illustrate them by more complicated examples,
and discuss the transformations for connected
Green’s functions.

It is more convenient for some cases to introduce
the spinor notation. Let
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ie.,
01=7"=(1/v2)(1,-1) , Q,=¢"=(1/v2)(1,1) ,
.
of = l ] Qz——\/—[] (B2)
The normalization condition
Q0"=1
is expressed as
N Ne=E%%,=1, n%a=£E"M.=0 , (B3)

where % & are components of n” and ¢7, e

0= n’ , 0T=(n,8) ; (B1) In spinor notation the transformation from G to
¢ G [Eq. 2.39)]is
| -
Gro a2t 1 (12 -+ ) =2mAER R Be TG (12 n) (B4)
while the inverse transformation from G to G [Eq. (2.36)] is
G‘,‘az.A.a"(IZ ce n)=2‘_"/2(§¢] “ €2 Gn..2tMaba, £a, G2 2t éama, " £a,Goiz. 2t -+
+§a1 T fa"_l")u';quil"' o +nal T MNa _‘ganGl-”U
+Nay §a,_Ma,G1...1t - FéaMa, ’Tla"Gzl-~-1) (B5)
The generating functional Z (J(x)) can be expanded as
=3 — () -
ZUGN=3 [ fpam) | D )
- 1
=1_,”§17!_L e J;Gp(l RN OV ACOIEEA )
) oo 1 oo oo ! n R
=1_'n§17f—m ' LmGul'”an(l ' n)(o.sj)al ' (0-3J)an (B6)
If we take J(x) =J_(x) =J(x), Eq. (B6) becomes
w1 s bl « P
20N =1=1 S [ [T Ge e ™™ B7)
According to the normalizati‘on condition (2.16)
ZUO s ,w=1_=st0 =1
and considering the arbitrariness of J(x) we obtain
a2 - ) =2 g g G (120 1) =0 (B8)
thus the first theorem (2.37) has been proved.
It follows from Eq. (B8) for three-point functions that
(CRUE RN o CRNS f IR J NN o CFUE  CFUS | (N (B9)
Similarly, for four-point functions we have
G(”E% pINE! +aBy8)G,,p,3=G(_)‘='% S (1-aByd)Gapys 5 (B10)

aBys aByd

i.e, the sums of terms with the same signature are equal.
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To prove the second theorem we first multiply Eq. (B4) by the normalization condition of step functions (2.29)
to obtain

Gy 21— (1 - - n)=(=pr127271 % @(p; - - P)ET e gy
: pl1--n
)
x (T,(‘Pal(l) ce ‘Pa”(n))) : ) (B11)
Let

. |€7 iflsp <k,

Oi= (B12)

np’, ifk+1<p=n,

we have

Opy -+ p)E" o £ (T (P (1) - 9 ()

=0(py - p)U UG (0) 9, (5))) (BI3)

because of the definition of the ® function (2.26) and the symmetry of CTPGF.
Since the time ordering in the usual sense has already been fixed by the © function the action of the 7, opera-
tor is reduced to

ST (1) - 0 (5)) == (T, (0D - @ (pa)). 9))
where

6L if {7 =q", B
(1) {’ }’ ifgp"=§pn. ( 14)

Such a process of getting rid of T, can be continued up to the last step to get zero, if cp‘ =~qp‘ or
2= (@), P(py) - ), e(py)

if gp‘ = fp‘. We see that the factor 27"/2*! exactly cancels out the numerical coefficient 27271 50 proving the
theorem (2.40). In Sec. II B we have considered the two-point functions. As a further example we have for n =3

Gui(123) =(=i)? 3, 0 (ll1,d,jl) ,

ref3

G21(123) = (—i)? 2[:‘(9(/j3)([[i,j},3]>+®(i3j)({[i,3l,j})) , (B15)
pE 1,-12.

G(123) = (=2 3, 0Gjk) ({{ij}k}) == ({{1,2},3}) ,
PEP3

and for n =4

Gun(1234) =(=* 3, ok (Ll jLkl)

234
Pe lijk

Gon(1234) =(=)* 3 @UijkD (IL{ij },k1,00) +OCikiD (I{Tik1.j Ly +0Cklj) LTk LILi )
pe{n"u

if|k (B16)
G121 (1234) = (—i)? %](®(Uk4)(“{i,j),k],‘”)+®(ij4k)(l[{i,j},4],k})+®(i4jk)(“[i,4],j}.k M
relR

G1nn(1234) =(=)3({{{1,2},3},4}) ,
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where for short we write i = (i), etc.

It is interesting to note that although all the possible combinations of retarded, advanced, and correlation func-
tions are realized in real time, they are defined by the CTPGF approach in a quite natural way.

The first theorem (2.37) is valid also for the connected CTPGF, since we can repeat word for word the proof
starting from Eq. (2.17). This is not the case for the second theorem, where some complications appear. It fol-
lows from the definitions of disconnected [Eq. (2.4)] and connected [Eq. (2.15)] CTPGF’s that

Gi(1) =G,(1) , (B17a)
G£(1,2) =G,(1,2) +iG,(1)G,(2) , (B17b)
G£(1,2,3) =G,(1,2,3) +i[G,(1)G,(2,3) + G,(2)G,(1,3) +G,(3)G,(1,2)1-2G,(1)G,(2)G,(3) ... . (B17¢c)

It can be shown by use of Eq. (B17) that the formulas for all "purely" retarded functions remain true, as for

example

G5 (1,2) =G»(1,2) =—i0(1,2)([1,2]) . G5,(1,2,3) =G (1,2,3) , G%,,(1,2,3,4) =G1i(1,2,3,4) ...

(B18)

These functions are similar to r functions used to construct the Lehmann-Symanzik-Zimmermann (LSZ)? ax- ‘
iomatic field theory, which are the same for both connected and disconnected functions. All other functions are

modified, for example,

Gi(12) =—i({({1,2}) = {(1), () D , (B19)
G522 (123) = (=)? 3, {0(p2,p3, D (L p2,p3 ), 11) = ([{p2) p3, 11) — {[p2(p3). 11)) »
00 Lo (s 11y )) (Lo 1D () ]  ®0
Gsn (123) =(—i)2p2®(plpzpa)((l {pipabps)) = (e o) +2L{(p1), (p2) 1 (03D ) (B21)
3
G511 (1234) = G111 +2i[G (1) G311(234) + G(2) G (134)142i[G,(13) G,(24) + G,(14) G,(23)] , (B22)
05221(1234)=02221(1234)+2i[G(1)Gw(234)%6(2)0221(134)+G(3)Gm(124)]
+2ilG.(12) G,(34) + G.(13)G,(24) + G.(23)G,(14)]
-8[G(1)G(2)G,(34) +G(1)G(3)G,(24) +G(2)G(3)G,(14)] . (B23)
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