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Symbolic dynamics is a coarse-grained description of dynamics. By taking into
account the ìgeometryî of the dynamics, it can be cast into a powerful tool for practi-
tioners in nonlinear science. Detailed symbolic dynamics can be developed not only for
one-dimensional mappings, unimodal as well as those with multiple critical points and
discontinuities, but also for some two-dimensional mappings. The latter paves the way
for a symbolic dynamics study of ordinary differential equations via the PoincarC maps.
This paper provides an overview of the recent development of the applied aspects of
symbolic dynamics.

PACS. 05.45.+b - Chaotic phenomena.

I .  I n t r o d u c t i o n

Symbolic dynamics is a rigorous way to study complex dynamics with finite precision.
As an abstract chapter in the mathematical theory of dynamical systems [l, 21, it originated
from the work of Hadamard [3] and Morse [4]. The basic idea is very simple: divide the
phase space into a finite number of regions and label each region by a letter from a certain
alphabet; instead of following a trajectory point by point one only keeps recording the
alternation of letters. One loses a great amount of detailed information on the dynamics,
but some essential, robust, features of the motion may be kept, e.g., periodicity or chaoticity
of an orbit. This is nothing but what physicists call a coarse-grained description.

The idea of symbolic dynamics applies to dynamics in any finite-dimensional phase
space. In many cases, say, for theorem-proving, an arbitrary partition of the phase space
would do the job. However, only for one-dimensional mappings symbolic dynamics has
been developed more or less completely. This is due to the nice ordering property of real
numbers on an interval and due to the possibility of partitioning the ìphase spaceî, i.e., the
interval, in accordance with the ìgeometryî of the dynamics. In fact, many useful rules and
beautiful results have been derived. Recently, significant progress has been made in symbolic
dynamics of two-dimensional maps, but the achievement is still rather limited compared to
what has been known in one dimension. Nevertheless, the knowledge of symbolic dynamics
in one and two dimensions proves to be quite instructive in understanding the systematics
of periodic orbits and
e.g., the Lorenz model

chaotic behavior in some higher-dimensional dissipative systems,
and some periodically forced nonlinear oscillators. The presence of
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dissipation is essential, since it causes the shrinking of phase space volume, which makes
a ìstrange attractorî closer to a low-dimensional objects at least in certain sections of the
attractor.

Chaotic dynamics of dissipative systems provides a rare and lucky case in physics,
when low-dimensional systems are not merely toy models, but lead to essential ìuniversal”
results which are quite useful in understanding higher dimensional systems. In a sense,
everyone who enters the field of chaos should start with the study of symbolic dynamics.
We have called this approach applied symbolic dyrlamics [5-81.

Applied symbolic dynamics commenced from a seminal paper by Metropolis, Stein
and Stein [9]. The kneading theory of Milnor and Thurston [lo], the lecture of Guckenheimer
[ll], and a paper by Derrida, Gervois, and Pomeau [12], among others, further developed
the theory. What had been known by the end of 1970s was summarized in the book by
Collet and Eckmann [13]. There has been significant generalization and simplification of the
theory both for one-dimensional and two-dimensional mappings as well as their application
to ordinary differential equations since the mid 198Os,  for details see, e.g., [7,8].

II.  One-dimensional mappings

We consider one-dimensional maps of the general form

where f(p, z) is a nonlinear ìmapping functionî of the variable 2 and p is a set of parame-
ters. The function f(z) maps an interval I into itself; it may have several monotone pieces
between ìturningî points and discontinuities. Symbolic dynamics of such maps has been
understood more or less completely. We summarize some main points:

1. The phase space, i.e., the interval, is partitioned according to the monotone
branches of the mapping function. Any numerical orbit corresponds to a semi-infinite
symbolic sequence and a functional composition represented by the same set of symbols,
understood as inverse functions of the monotone branches.

2. All symbolic sequences for a given type of maps may be ordered. Admissibility
conditions based on ordering rules may be formulated to test whether a given symbolic
sequence is reproducible in the dynamics or not.

3. There is a Periodic Window Theorem: any admissible superstable periodic se-
quence may be extended to a ìwindow” with its upper and lower sequences. It leads to a
method of generating the shortest admissible superstable periodic sequence in between any
two given admissible periodic sequences.

4. There is a word-lifting technique 114,151  which allows one to determine the pa-
rameter of any given type of superstable periodic and eventually periodic orbit.

5. There are composition rules which generate more admissible sequences from known
ones. The simplest rule is called the *-composition [12] and it has a close relation with
possible fine structure in the power spectra of observed periodic orbits.

6. The counting problem on how many periodic orbits exist for a given map has been
solved completely for continuous maps [16] and partly for maps with discontinuity [l7].

7. Topological entropy of superstable periodic and eventually periodic sequences may
be calculated from transfer matrices which may be written down directly from the symbolic
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sequences without knowing the precise form of the mapping function.
8. Maps with multiple critical points and discontinuities are best parameterized by

their kneading sequences. The parameter space, called also the kneading space, may be
constructed by using the admissibility conditions.

9. Circle maps, i.e., maps from a circle to itself, though may be studied as that with
multiple critical points and discontinuities, do possess some specific features dictated by
the topology of the phase space. Their study is facilitated by the Farey representation of
rational numbers and the associated machinery, see, e.g., Chapter 4 of [8].

10. For maps with a discrete symmetry there are the phenomena of symmetry break-
ing and restoration which may be analyzed by using symbolic dynamics [18].

11. Symbolic sequences in the unimodal maps are naturally related to formal language
and the theory of grammatical complexity. Periodic and eventually periodic sequences are
the only types of regular language. The transfer matrix provides a way to go beyond regular
languages [19]. There are examples of context-dependent languages of different complexity
but no known example of context-free language yet. Hence a conjecture: no context-free
language exists in the languages associated with unimodal maps. A good reference to this
set of problems is [20].

12. Periodic orbits in unimodal maps are related to knots in 3-space. There are some
observations but not much rigorous results, see, e.g., Chapter 9 in [8].

III. Two-dimensional mappings

In two- and higher-dimensional systems the nice ordering property of real numbers
and the simple partition of an interval, which have played crucial role in symbolic dynamics
of one-dimensional maps, no longer exist. In addition, 2D maps usually lead to bi-infinite
symbolic sequences. The partition for the H&on  map [al], using tangencies of the invariant
manifolds of the fixed points, was first discussed by Grassberger and Kantz [22] in order
to calculate its topological entropy. Then Cvitanovic,  Gunaratne, and Procaccia [23] used
the partition to develop symbolic dynamics. Later on the role of forward and backward
foliations of the map in determining the partition lines has been recognized by Zheng
and collaborators. In fact, the generalization from tangent points between the stable and
unstable manifolds to that between the two dynamical foliations are essential and necessary,
as it was shown analytically on the example of two piecewise linear maps. The simplest
case turns out to be the two-dimensional version of the sawtooth map, introduced by Tel
[24].  Its symbolic dynamics was constructed in [25]. The piecewise linear counterpart of
the Henon map, socalled Lozi map [26], may be treated in a similar manner [27,28]. The
two piecewise linear maps helped to reach a deeper understanding of the symbolic dynamics
of the H&non map [29-321. However, the symbolic dynamics of H&non map has not been
understood thoroughly on the whole parameter plane.

We mention in passing that dynamical foliations may be constructed for Hamiltonian
systems as well especially when the Poincare sections may be reduced to two-dimensional,
hence leading to a better symbolic dynamics, see [33,34].
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VI. Ordinary differential equations

In order to cut a long story short we will only mention a few results of applying
symbolic dynamics to ordinary differential equations.

Some years ago we have applied symbolic dynamics of one-dimensional maps to the
systematics of periodic orbits in differential equations. In particular, the ordering of periodic
orbits of the periodically forced Brusselator [35]  has been compared to that of the quadratic
map, using symbolic dynamics of two letters [36].  The systematics of periodic orbits [37] in
the autonomous Lorenz model has been juxtaposed with the ordering of kneading sequences
in the antisymmetric cubic map with and without a discontinuity [38].  These essentially
one-dimensional studies were summarized in [39].

Our main argument for using 1D maps lies in the shrinking of phase space volume due to
dissipation. However, the Poincare maps of ordinary differential equations are necessarily
two-dimensional and there is no a priori reason that the two-dimensional nature will not
show off. Having reached a better understanding of symbolic dynamics of two-dimensional
maps, we have undertaken the job of justifying the previous one-dimensional approach and
revealing the cases where a two-dimensional study leads to essentially new insight. We
list some recent references: the periodically forced Brusselator [40,41], the forced two-well
Duffing equation [42],  the NMR-laser model [43,44], and the Lorenz model [45-481.  In the
Lorenz equations numerical work under the guidance of topology, i.e., symbolic dynamics,
has yield all stable and unstable periodic orbits up to period 6 in a wide parameter range
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