
Sequence Models

Dynamic Programming

Sequence Alignment



Sequence Models (1)

eiid: independently indentically distributed

with equal probabilities:

pa = pc = pg = pt = 1/4.

No parameter.

niid: independently identically distributed

with non-equal probabilities:

pa + pc + pg + pt = 1.

3 parameters.

iid models are often used as reference for

other models.

Applications: distinguish E. coli DNA from

others.



Sequence models (2)

niid under Chargaff Parity Rule II:

pc ≈ pg, pa ≈ pt. Take ≈ to be =:

2pc + 2pa = 1

One parameter, e.g., the G+C or simply GC

content.

Note: The Chargaff Rules:

1. Parity Rule I (1948-1950): pc = pg, pa =

pt in double-strand DNA.

2. Parity Rule II (1968): pc ≈ pg, pa ≈ pt in

single-strand DNA.

3. Cluster Rule (1963): 60% of Y runs to-

gether.

4. GC Rule (1951, 1979): GC is a constant

in a species.

Erwin Chargaff, How students got a chemical educa-

tion, Annals N.Y. Acad. Sci. 325 (1979) 345 – 361.



Sequence Models (3)

MMn — Markov Chain Model of order n:

n = 1

4 initial probabilities: pa, pc, pg, pt

independent on position in sequence

16 transfer probabilities calculated from

2-tuple frequencies:

Tαβ =











paa pac pag pat
pca pcc pcg pct
pga pgc pgg pgt
pta ptc ptg ptt











5 normalization conditions:
∑

α∈{a,c,g,t}

pα = 1,

∑

β∈{a,c,g,t}

pαβ = 1, ∀α ∈ {a, c, g, t}

4+16-5=15 parameters.



Sequence Models (4)

MMn — Markov Chain Model of order n:

n = 2

16 initial probabilities, nearest neighbor

correlation taken into account, no other

positional dependence.

64 transfer probabilities calculated from

3-tuple frequencies.

17 normalization conditions: 1 for initial

probabilities, 16 for each row of the

transfer matrix.

42 + 43 − (1 + 42) = 63 parameters.

MM3 and lower are not capable to account

for DNAs (known since 1980s)

MM5 are widely used in gene-finding programs

for introns and intergenic regions. A simplest

inhomogeneous Markov Model, namely, the

period 3 MM5 model is used for exons.

Home work: how many parameters are there

in a period 3 MM5 model?



Sequence Models (5)

Weight Matrix — position-dependent but

no correlation:

Example:

α1 α2 α3 α4 α5 α6 α7 α8 α9

a 0.37 0.49 0.94 0.92 0.27 0.31 0.37 0.21 0.11
c 0.12 0.21 0.0 0.01 0.22 0.11 0.02 0.25 0.02
g 0.11 0.20 0.0 0.02 0.23 0.34 0.44 0.25 0.02
t 0.40 0.10 0.06 0.05 0.28 0.24 0.17 0.29 0.85

A 4 × 9 matrix. 27 parameters.

A simpler position-dependent model for the

above example, the consensus sequence:

WWAANWRNW

Drawback of both: no correlations of ad-

jacent nucleotides taken into account. One

may combine MMn with Weight Matrix to

build more complicated sequence models. Hard

to call them Markovian due to limited length

of the signal.



Known dataset:

Training set: parameter fitting

Test set: check for expected results.

FP: False positives

FN: False negatives

TP: True positives

TN: True negatives

SN: Sensitivity

SN =
TP

TP + FN

SP: Specificity

SP =
TP

TP + FP

Unknown dataset

The 70% hurdle of all kinds of predictions in

bioinformatics.



G+C Content Domains in

Genomic Sequences

Isochores of about 300kbp (G. Bernardi, 1985).

4 types of isochores in human genome.

From training data: pi
a, pi

c, p
i
g, p

i
t, i = 1,2,3,4

and a niid reference set of p0
a, p0

c , p0
g , p0

t from

all sequences in the training set.

For a given unknown sequence calculate the

likelihood or odd-ratio:

r =

∏

{a,c,g,t}(p
i
α)Nα

∏

{a,c,g,t}(p
0
α)Nα

for all i.

Logarithmic odd-ratio: log r.

Human genome: no isochores, “GC content

domains” (E. S. Lander et al., 2001)



CpG Islands

1. niid model: not good as dinucleotide fre-

quencies are concerned.

2. MM1 model: better, but not as good as

HMM.

3. HMM model: HMM = Hidden Markov

Model



HMM for CpG Islands
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Prediction without Training Data (1)

Example: iterative method (Zheng Wei-mou)

Given a contig of 120 000bp. Determine the

coding (CDS) and non-coding (NCDS) seg-

ments in the contig.

Divide the contig into many non-overlapping

segments of 120bp. Label these segments as

C and N in an arbitrary way.

Calculate {pC
α},{pN

α }, {p0
α} for the collection

of C, N , and all segments.

Calculate the likelihood. Keep or change the

labels according to the likelihood.

Iterate.

If it converges, the contig is divided into a col-

lection of two different composition groups.

Many possible refinements and modifications.



Prediction without Training Data (2)

See Zheng Wei-mou’s recent papers:

1. “Genomic signal enhancement by

clustering”, Commun. Theor. Phys.

39 (2003), 631.

2. “Genomic signal search by dynamic

programming”, Commun. Theor. Phys.

39 (2003), 761.

3. “Finding signals for plant promoters”,

Genomics, Proteomics & Bioinformatics

1 (2003) 68.



Dynamic Programming

Invented by Richard Bellman in the 1950s

Simple example: find the minimal-toll path

from A to B:
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Forward calculation — at intermediate stage:
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Forward calculation — final situation:
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Tracing back:
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Pairwise Sequence Aligment

Given two symbolic sequences of

length N and M , respectively:

Σ = σ1σ2 · · ·σN

and

Π = π1π2 · · ·πM ,

where σi and πj are symbols from

the same alphabet.

Suppose that there is a scoring scheme:

Score

Exact match σi ≡ πj δ > 0

Mismatch σi 6= πj β < δ
Gap penalty γ < 0

Goal: obtain the alignment(s) with the

largest additive score.



Alignment by Dynamic Programming

Start from position i = 0 and j = 0 with

initial score S(0,0) = 0.

Suppose that we have obtained the best

alignment up to position i in sequence Σ

and position j in sequence Π with total

(additive) score S(i, j). The next score

is generated as follows:

S(i+1, j+1) = max











S(i, j) + δ(if match),
S(i, j) + β(if dismatch),
S(i, j + 1) + γ,
S(i + 1, j) + γ.

Mark the path whereby the actual

S(i + 1, j + 1) was obtained.

Repeat until we reach i = N and j = M with

the highest total score S(N, M). Trace back

to figure out the best path which gives the

required alignment. There may be more than

one alignment with the same highest score.



Home Work

Given two sequences:

ALGORITHMIC

ARITHMETIC

Please obtain the best alignment(s) of these

two sequences according to the scoring scheme:

Score

Match 2
Mismatch -1

Gap -2



Scoring Matrix for DNA Sequences

a c g t
a 1 0 0 0
c 0 1 0 0
g 0 0 1 0
t 0 0 0 1

a c g t
a 0.9 −0.1 −0.1 −0.1
c −0.1 0.9 −0.1 −0.1
g −0.1 −0.1 0.9 −0.1
t −0.1 −0.1 −0.1 0.9

Scoring matrix used in BLASTN

a c g t
a M N N N
c N M N N
g N N M N
t N N N M

M > 0, N < 0 (default: M = 5, N = −2)



The PAM250 Scoring Matrix

for Amino Acids

PAM = Point Accepted Mutation

A R N D C Q E G H I L K M F P S T W Y V
A 2
R −2 6
N 0 0 2
D 0 −1 2 4
C −2−4−4−5 12
Q 0 1 1 2 −5 4
E 0 −1 1 3 −5 2 4
G 1 −3 0 1 −3−1 0 5
H −1 2 2 1 −3 3 1 −2 6
I −1−2−2−2−2−2−2−3−2 5
L −2−3−3−4−6−2−3−4−2 2 6
K −1 3 1 0 −5 1 0 −2 0 −2−3 5
M −1 0 −2−3−5−1−2−3−2 2 4 0 6
F −3−4−3−6−4−5−5−5−2 1 2 −5 0 9
P 1 0 0 −1−3 0 −1 0 0 −2−3−1−2−5 6
S 1 0 1 0 0 −1 0 1 −1−1−3 0 −2−3 1 2
T 1 −1 0 0 −2−1 0 0 −1 0 −2 0 −1−3 0 1 3
W−6 2 −4−7−8−5−7−7−3−5−2−3−4 0 −6−2−5 17
Y −3−4−2−4 0 −4−4−5 0 −1−1−4−2 7 −5−3−3 0 10
V 0 −2−2−2−2−2−2−1−2 4 2 −2 2 −1−1−1 0 −6−2 4

R. M. Schwartz, M. O. Dayhoff, in Atlas of

Protein Sequence and Structure, ed. by M.

O. Dayhoff, 345–352, 353–358, 1978.



The BLOSUM62 Scoring Matrix

for Amino Acids

A R N D C Q E G H I L K M F P S T W Y V
A 4
R −15
N −20 6
D −2−21 6
C 0 −3−3−39
Q −11 0 0 −35
E −10 0 2 −42 5
G 0 −20 −1−3−2−26
H −20 1 −1−30 0 −28
I −1−3−3−3−1−3−3−4−34
L −1−2−3−4−1−2−3−4−32 4
K −12 0 −1−31 1 −2−1−3−25
M −1−1−2−3−10 −2−3−21 2 −15
F −2−3−3−3−2−3−3−3−10 0 −30 6
P −1−2−2−1−3−1−1−2−2−3−3−1−2−47
S 1 −11 0 −10 0 0 −1−2−20 −1−2−14
T 0 −10 −1−1−1−1−2−2−1−1−1−1−2−11 5
W−3−3−4−4−2−2−3−2−2−3−2−3−11 −4−3−211
Y −2−2−2−3−2−1−2−32 −1−1−2−13 −3−2−22 7
V 0 −3−3−3−1−2−2−3−33 1 −21 −1−2−20 −3−14



Comparison of PAM and BLOSUM

Scoring Matrices

PAM BLOSUM

Obtained Global alignment Local alignment
from of closely of distantly

related seqs related seqs

NumberingThe greater The greater
the farther the closer

Values by Extrapolation direct
from closely calculation
related seqs

Default PAM250 BLOSUM62



General Form of Scoring Matrices

(Karlin and Altschul 1990)

Under two quite general conditions:

1. At least one of the matrix elements {sij}

is greater than zero.

2. The expectation of all the matrix elements

is negative:

∑

ij

pipjsij < 0

any scoring matrix must be of the form

sij =
1

λ
log

qij

pipj
,

where λ is a scaling factor and all the biology

is contained in qij.



Proof

Define an auxiliary function

f(x) =
∑

ij

pipje
sijx,

whose behavior is determined by

1. f(0) =
∑

ij pipj = 1.

2. f ′(x) =
∑

ij pipjsije
sijx,

f ′(0) =
∑

ij pipjsij < 0.

3. f ′′ =
∑

ij pipjs
2
ije

sijx > 0 everywhere.

Therefore, f(x) is a concave up function. f(x)

decreases from 1 near x = 0. However, since

there is at least one sij > 0, f(x) must diverse

for x big enough. There must be an x = λ

where the equality holds:

f(x = λ) =
∑

ij

pipje
sijλ = 1.

Let qij ≡ pipje
sijλ QED



λ and qij have important meaning for scoring

systems:

1. It does not matter if one multiply all sij by

a factor, say, 10. Nothing changes if λ →

1/λ. Therefore, λ is a scale factor and

λsij = constij. In particular, ln may take

any base and sij acquires a unit. There

was a time when the only searching tool

was FASTA, people used scores without

mentioning their units. Base e leads to

nits, log2 leads to bits. In practice, all

sij are integers, because the calculated

floating numbers have been rounded off

to integers.

2. What is the highest score expected? The

result was simple, but the proof took S.

Karlin and Demko much work (Ann. Prob.

22, 2022-2039). Their paper was almost

unreadable.

Before considering the highest score, let

us determine the number of distinct local

aligments that have a score larger than



a preset value x. On what factors this

number will depend?

• It depends on the length of the two

sequences to be compared, m and n,

usually we use search space size N =

m × n. E(x) ∝ mn.

• It depends on the scores sij.

• It should decay exponentially with grow-

ing x: E(x) ∝ e−λx We would like to

have this constant be the λ defined be-

fore. It was indeed proved by Karlin

and Demko.

Therefore, we have

E(x) = KNe−λx.

This is an asymptotic relation for

m, n � 1.

Karlin and Demko have formula to cal-

culate K. It is expressed by an infinite

series with geometric convergence. For

many scoring schemes K is of the order

of 1/10. We see that x obeys a Poisson

distribution.


