
Statistics and Probability

in Bioinformatics

It is a MUST. It is not ENOUGH.

A very brief introduction.

Statistics Probability

Data {yi} Prob distribution
Estimate: Calculate:

Average Expectation
Deviation Variance

Moments, · · ·
Various Estimators Any f(Y )

Testing hypotheses

”Useful but no theory” ”Theory of no use”

The last row is an exaggeration by

ZHENG Wei-mou.

K. Lange, Mathematical and Statistical

Methods for Genetic Analysis, Springer, 1997.

W. J. Ewens, G. R. Grant, Statistical

Methods in Bioinformatics, Springer, 2001.



Statistical methods alone are not strong enough

to amplify the difference between a DNA se-

quence and a random sequence or the dif-

ference between two DNA sequences. Need

more ”deterministic” approaches.

This is a working programme, not a summary

of accomplished research.



Discrete Random Systems

Sampling space consists of (finite or infinite)

discrete points.

1. Coin tossing: {Head,Tail}, {0,1}, {−1,1}

2. Dice tossing (a cube): {1,2,3,4,5,6}

3. A Nucleotide Die (a tetrahedron): {a, c, g, t}

4. An Amino Acid Die: {A, C, · · · , W, Y }

Get used to think in terms of spaces even

when the latter contain a finite number

of points.

Plato Polyhedron: 4, 6, 8, 12, 20.



Random Variables

It is a good practice to use two symbols, e.g.,

Y and y:

Y — name of a random variable, an

abstraction, may be defined in words.

y — a value that Y takes at an observation,

at a realization, or at a sampling.

When y takes discrete values Y is a discrete

random variable.

The collection of all possible {y}— sampling

space, may be finite or infinite.

Probability Fuction:

PY (y) = Prob(Y = y)

— the probability that Y takes value y.



Frequency, Probability, Energy,

and Temperature

Frequency of a, c, g, t in a DNA sequence:

Na Nc Ng Nt

Normalization:

Na + Nc + Ng + Nt = N

Divide by N to get probability of nucleotides:

pa + pc + pg + pt = 1

A useful trick: introduction of “energy” and

“temperature”:

pa → e−
Ea
T

Different “energies” but the same

“temperature” (in energy unit or write kT

in degrees Kelvin).



Temperature as a useful parameter

Two (or three) limits:

1. T → 0 singles out the lowest energy state

(“ground state”).

2. T →∞: energy difference indifferent.

Essence of simulated annealing

3. Might consider T → −∞: picking up the

highest energy state.



Probability Notations

PY (y)

Prob(Y = y)

PY (y; θ) — θ stands for one or more

parameters, written explicitly only when

parameters are emphasized.

Normalization of probability:

∑

{y}
PY (y) = 1



Expection value = mean:

µ ≡ E(Y ) =
∑

{y}
yPY (y)

This is a theoretical calculation. µ is

determined by parameter(s) of the

distribution.

Average:

y = 1
N

N
∑

i=1

yi

y is a random variable. It is obtained from

experiments.

mean 6= average

y may be used as an estimator for µ.



Expectation of Y 2

E(Y 2) =
∑

{y}
y2PY (y)

E(Y 2) contains contribution from

E(Y )2 = µ2. In order to highlight the real

“nonlinear”, “self-correlation”, define

Variance:

σ2 ≡ V ar(Y ) = E((Y − µ)2) = E(Y 2)− µ2

It is different from the Average of the Squares:

y2 = 1
N

N
∑

i=1

y2
i

y2 contains contribution of (y)2.

y2− (y)2 may be used as an estimator for σ2.



A Trick to calculate Mean and Variance

Starting from the normalization equality

∑

{y}
PY (y; θ) = 1

Taking derivatives on both sides:

d

dθ







∑

{y}
PY (y; θ)





 = 0

Solve the above equation to get µ.

Taking derivative again:

d2

dθ2







∑

{y}
PY (y; θ)






= 0

From the above two Eqs. ⇒ σ2.



Estimators: Unbiased and Biased

Estimating µ by y and σ2 by y2 − y2 are the

simplest particular cases of estimating

probabilistic characteristics by statistical

quantities (Estimators).

In general, if

E(Prob Characteristic−Estimator) = 0

it is an unbiased estimator. Otherwise, it is

a biased estimator.

The art of constructing unbiased

estimators (look for Russians):

V. G. Voinov, M. S. Nikulin, Unbiased Estimators and

Their Applications, Springer, 1993.

vol. 1 Univariate Case

vol. 2 Multivariate Case



Example of Estimators

The sample average y is an unbiased

estimator of µ.

The sample deviation y2 − y2 is a biased

estimator of variance σ2, because

E(y2 − y2) =
n

n− 1
σ2

for Gaussian IID random variables.

Therefore, the unbiased estimator for σ2 is

n− 1

n
(y2 − y2)

Unbiased estimators are not necessarily

better than biased estomators. There are

cases when unbiased estimators simply do

not exist.



Examples of Discrete Distributions

1. Bernulli test

2. Binomial distribution

3. Poisson distribution

4. Geometric distribution

5. Uniform distribution



Single Bernulli test (1)

Probability of success: p

Probability of failure: 1− p

Random variable Y :

y =

{

1, with p
0, with (1− p)

Distribution:

PY (y) = py(1− p)1−y, y = 0,1

Expectation: µ = p

Variance: σ2 = p(1− p)



Single Bernulli test (2)

Probability of success: p

Probability of failure: 1− p

Define the random variable Z in a different

way:

z =

{

1, with p
−1, with (1− p)

Distribution:

PZ(z) = p
1+z
2 (1− p)

1−z
2 , z = 1,−1

Home work:

Expectation: µ = 2p− 1

Variance: σ2 = 4p(1− p)



The Law of Big Numbers

Perform n Bernulli tests with success proba-

bility p. Denote the number of successes by

Sn, then

lim
n→∞

Sn

n
= p.

In probability theory notations:

lim
n→∞(|Sn

n
− p| ≤ ε) = 0, ∀ε > 0

Roughly speaking: when n is big,

frequency → probability.



Binomial Distribution (1)

Many single Bernulli tests each with proba-

bility of success p

N independent tests

Random variable Y = number of successes in

N tests: y = 0,1, · · ·, N

Probability of Y = y:

BY (y;N, p) = C
y
Npy(1−p)N−y, y = 0,1,2, · · · , N

Symmetric only when p = 0.5.

1. Number of tests N fixed beforehand.

2. Independent tests.

3. Same p for all tests.



Binomial Distribution (2)

How to remember it:

(a + b)N =
N
∑

y=0

C
y
NaybN−y

Let a = p, b = 1− p to get

1 =
N
∑

y=0

C
y
Npy(1− p)N−y

That is:
N
∑

y=0

B(y;N, p) = 1

BY (y;N, p) = C
y
Npy(1−p)N−y, y = 0,1,2, · · · , N

Home work:

1. Expectation: µ = Np.

2. Variance: σ2 = Np(1− p).



A limit of Binomial Distribution at

N →∞

p→ 0

Np = λ finite:

BY (y;N, p)→ e−λλy

y! (Poisson distribution)



Poisson Distribution

S. D. Poisson (1837)

Distribution of rare (in time or space) events:

PY (y;λ) = e−λλy

y!

It is a one-parameter distribution. Almost a

symmetric peak when λ > 5.

1. Number of α particle decays in a time in-

terval.

2. Number of deaths due to horse running-

mad in Prussian army.

3. Many instances of distribution of K-tuples

in DNA sequences.

4. The percentage represented at a certain

coverage X in a sequencing project.

5. Lander-Waterman curve for number of con-

tigs versus coverage.



Poisson Distribution

How to remember it?

Decomposition of unit:

1 = e−λeλ

Insert the series expansion

eλ =
∞
∑

n=0

λn

n!

to get

1 =
∞
∑

n=0

e−λλn

n!

PY (y;λ) = e−λλy

y!

We have

∞
∑

n=0

PY (y;n, λ) = 1



The percentage represented at a certain

coverage X

G — the genome size

L — the read size (usually L ≈ 500bp)

Probability that a designated nt is in a read

∝ L
G

Probability that a designated nt is not in a

read ∝ 1− L
G

Probability that a designated nt is not in N

copies of reads ∝ (1− L
G)N

Let L
G = NL

NG = X
N , as NL = XG

X is called coverage.

The above probability ∝ (1− X
N )N → e−X

Prob(a designatednt is represented in the reads)

= 1− e−X

(Clarke and Carbon, 1976)



The percentage represented at

coverage X

G — the genome size

L — the read size (usually L ≈ 500bp)

N — number of sequenced reads

X = N×L
G — coverage

The percentage that a designated nt is

represented in the reads:

Clarke-Carbon formula (1976):

f = 100× (1− e−X)

X 1 2 3 4 5 6
f 63 86.5 95 98 99.4 99.75

X 7 8 9 10
f 99.91 99.97 99.99 99.995



What is e−X

Suppose that the probability that y copies of
the designated nt are present in the reads is

given by Poisson distribution

PY (y;λ) =
λye−λ

y!

The probability that y = 0 is

PY (0; λ) = e−λ

Therefore, λ = X in our problem.

Consequently, the probability that y = 1:

PY (1; X) = Xe−X

This is an over-simplified version of the Lander-
Waterman curve.

Maximum at X = 1 as seen from

dPY (1; X)

dX
= e−X(1−X) = 0

A more realistic discussion must consider over-

laps and assembling of reads into contigs.

We need geometric distribution to proceed.



Geometric Distribution

Single Bernulli test with success probability p,

probability of failure q = 1− p

Random variable Y = y if y consecutive suc-

cesses followed by a failure.

Probability distribution:

PY (y) = py(1− p), y = 0,1,2, · · · ,

Applications:

1. Number of Q (Gln, Glutamine) runs in

SWISS-PROT.

2. Probability of single-letter runs in a Markov

Model.



Biased Geometric Distribution

ymin = c, i.e.,

y = c, c + 1, c + 2, · · · , c + k, · · ·

Probability distribution:

PY (k + c) = pk(1− p), k = 0,1,2, · · · ,

Expressed via probability of failure q − 1− p:

PY (k + c) = (1− q)kq

Applications:

Intron length distribution:

Minimal intron length: 50-90 bp depending

on species.



Lander-Waterman Curve (1)

G — Haploid genome size

L — Length of a read in bp

N — Number of reads sequences

X — Coverage of the genome: N×L = X×G

T — Minimal overlap to assemble two reads

into a contig, θ = T/L, σ = 1− θ

Probability of encountering a read: α = N
G

Probability of encountering an isolated read:

α(1− α)L−T

Probability of encountering two overlapping

reads: α2(1− α)L−T

”Stopping propability”:

(1− α)L−T = (1− N

G
)Lσ → e−Xσ



Lander-Waterman Curve (2)

”Stopping propability”:

(1− α)L−T = (1− N

G
)Lσ → e−Xσ

Compare to the Poisson distribution at y = 0:

λ = Xσ

Poisson distribution for y = 1 gives the es-

sense of Lander-Waterman:

Xσe−Xσ

# of contigs = # of exits from a read: αe−Xσ

# of contigs at coverage X:

G× αe−Xσ =
XG

L
e−Xσ

Return to Clarke-Carbon at θ = 0, i.e., σ = 1



Physical Mapping vs. Sequencing

Physical Mapping Sequencing
By Fingerprinting By WGS

G Haploid genome size

L: Length of Clone Read

N : # of Fingerprinted Sequenced
clones reads

X = LN
G Coverage Coverage

Islands Contigs

# of islands # of contigs

T Minimal overlap for extension
θ = T/L
σ = 1− θ

α = N/G
p = L/N



Continuous Distributions

Examples:

1. Normal distribution N(µ, σ2)

2. Exponential distribution

3. Extreme value distribution

4. Gamma distribution

Probability Density Function (PDF): ρ(x),

may not exist.

Distribution Function F (x) always exists:

F (x) =

∫ x

−∞
ρ(y)dy



Normal Distribution

Probability density for continuous random vari-

able X with mean µ and variance σ2:

N(µ, σ2) = 1
σ
√

2π
e
−(x−µ)2

2σ2

In terms of normalized variable z = x−µ
σ :

N(0,1) = 1√
2π

e−
z2

2

Tabulated is the distribution function:

Φ(x) = 1√
2π

∫ x
0 e−z2/2dz, Φ(−x) = −Φ(x)

Main application:

Prob(−1 < z < 1) = 2Φ(1) = 0.683,

P rob(−2 < z < 2) = 2Φ(2) = 0.954,

P rob(−3 < z < 3) = 2Φ(3) = 0.997,

P rob(−4 < z < 4) = 2Φ(4) = 0.9999



Extreme Value Distributioni (EVD)

EVD is behind the scoring scheme of BLAST

(“Basic Local Alignment Search Tool”

by Altschul et al., 1990)

Gapped-BLAST

PSI-BLAST

Note: EVD is a particular case of order statistics.



Central Limiting Theorems

iid random variables {xi} with finite µ and σ2.

Consider random variables:

Sn =
n

∑

i=1

xi, X = Sn
n

E(Sn) = nµ, σ2(Sn) = nσ2

Then
Sn−nµ√

nσ
=

(X−µ)
√

n
σ ∼ N(0,1)

The sum of a great number of iid random

variables tend to obey normal distribution.

May be relaxed to dependent case.



Chebeshev Inequality

For any distribution with finite mean µ and

finite variance σ2:

Prob(|X − µ| ≤ d) ≤ σ2

d

Extra notes:

1. Two distinguished students of Chebeshev:

Markov and Laypunov.

2. Chebeshev polynomials as best finite ap-

proximants in fitting any function. Finite Tay-

lor’s expansion being the worst.



Moments:

Given N samples of a random variable {xi}:

1st moment: µ1 = E(X)⇐ 1
N

∑N
i=1 xi

2nd momemnt: µ2 = E(X2)⇐ 1
N

∑N
i=1 x2

i

k-th moment: µk = E(Xk)⇐ 1
N

∑N
i=1 xk

i

How to calculate them all? Calculate the

expectation of a convenient function of the

random variable X, for example, etX, where i

is the imaginary unit.

Moment Generating Function (mgf):

M(t) = E(etX) =
∞
∑

j=0

tjE(Xj)

j!
=
∞
∑

i=0

tjµj

j!

µj =
dj

dtj
M(t)|t=0



Cummulants:

Given N samples of a random variable {xi}.
Recall the average, variance, · · · of
a random variable:

c1 ≡ µ⇐ 1

N

N
∑

i=1

xi, (1st cummulant)

c2 ≡ σ2 ⇐ 1

N

N
∑

i=1

x2
i − µ2, (2nd cummulant)

c3 = µ3 − 3c1c2 + 2c31, (3rd cummulant)

Key point: highlight the contribution of the

highest order nonlinear terms by subtracting

combinations of lower ones. How to calculate

them all? Define a Cummulant Generating

Function (cgf):

C(t) =
∞
∑

j=0

tjcj

j!

It is a matter of Exponentiation of the mgf:

M(t) = eC(t) or C(t) = lnM(t)



On Exponentiation

Exponentiation ⇒
Statistics Frequency pi “Energy” e−

Ei
T

(probability)

Probability Moments Cummulants
Theory

Graph Number of Number of
Theory graphs connected

graphs

Field Wick’s Theorem
Theory

Complex Unit circle Origin
Analysis

Continuous Lie groups Lie algebras
Group
Theory



Essense of Statistics

and Statistical Physics

Maximal uncertainty of input data,

observation, predicates, · · ·

Minimal uncertainty of results, conclusion,

inference, · · ·

Maximal Likelihood ⇔ Minimal Entropy

Bridge between “microscopic” and

“macroscopic” descriptions: from huge

data to few characteristics (thermodynamic

quantities, political decisions, · · ·)



Generalized Averages of Renyi (1)

x̃ =
1

N

N
∑

i=1

xi

x̃ =





1

N

N
∑

i=1

x2
i





1
2

x̃ =





1

N

N
∑

i=1

x3
i





1
3

x̃ =





1

N

N
∑

i=1

xk
i





1
k

x̃ = Φ−1





1

N

N
∑

i=1

Φ(xi)







Generalized Averages of Renyi (2)

Now take

Φ(y) = e−
y

kT

and solve it for y to get Φ−1:

y = −kT lnΦ(y), Φ−1(.) = −kT ln(.)

Express “macroscopic probability” in the same

way as microscopic ones:

e−
F (T )
kT =

1

N

∑

{j}
e−

Ej
kT

Just denote the summation over all possible

states by Z(T ) (the partition function), we

get

F (T ) = −kT lnZ(T )

Statistical physics is nothing but doing Renyi

average of the microscopic world to get macro-

scopic description.



Renyi’s Theorem

There are only two choices of Φ(y) that allow

for additivity of independent events:

1. Φ(y) = y — linear function.

2. Φ(y) = eλy — exponential function.



Statistical Physics in a Nutshell

Trilogy for equilibrium states:

1. Spectrum: j-th state with energy Ej

Probability of that state: ∝ e−
Ej
kT .

2. Normalization of probabilities → Partition

Function:

∑

j

e−
Ej
kT = Z(T ), P (Ej) =

e−
Ej
kT

Z(T )

3. Relation with thermodynamics via Free

Energy and its derivatives:

F (T ) = −kT lnZ(T )

S = −∂F (T )

∂T
, p = −∂F (T, V )

∂V



Bayesian Statistics

Joint Probability P (A, B) of two events A

and B

Conditional Probability P (A|B) —

the probability of A conditioned on that

of B. From the trivial relation

P (A, B) = P (A|B)P (B) = P (B|A)P (A),

we get the

Thomas Bayer’s Formula (1764):

P (A|B) =
P (B|A)P (A)

P (B)

This “innocent” formula becomes much more

meaningful if we interpret A as Model and

B as Data:

P (Model|Data) =
P (Data|Model)P (Model)

P (Data)

Posteriori ← Likelihood + Priori



Information and Probability

Given a set of N possible outcomes with equal

probability p = 1/N for each, the

Information I gained by learning that one

outcome has realized (Hartley, 1928)

I = logN = − log p

When log2 is used, the unit information is

called a bit. When natural logarithm ln is

used it is called a nat.

Shannon (1948) extended Hartley’s definition

to a set of outcomes with different

probabilities {pi}:

I = −
N
∑

i=1

pi log pi

When pi = p for all i, Shannon reduces

to Hartley.

Why taking logarithm? Additivity for

independent events.

Both papers appeared in

Bell System Technical Journal



Distance between Probability Distributions

Given two discrete distributions on the same

set of events: P = {pi}|Ni=1 and Q = {qi}|Ni=1,

how to define a distance between the two?

One possible definition: the Kullback-Leibler

distance

D(P, Q) =
∑

i

pi log
pi

qi

Symmetrization: 1
2(D(P, Q) + D(Q, P ))

Another possible definition:

D(P, Q) =
∑

i

2(pi − qi)
2

pi + qi

Positivity. Symmetry. Concavity.


